Menu

Blog

Page 8373

Sep 16, 2019

Graphene boosts microscope resolution by a factor of 10

Posted by in categories: biotech/medical, materials

Sub-nanometre resolution in 3D position measurements of light-emitting molecules has been achieved by physicists in Germany. Jörg Enderlein and colleagues at the University of Göttingen achieved the result by replacing metal films used in previous super-resolution techniques with single layers of graphene. Their innovation could allow researchers in a wide variety of fields to measure molecular positions to unprecedented degrees of accuracy.

Recently, the technique of single-molecule localization super-resolution microscopy (SMLM) has become an incredibly useful tool for researchers in fields ranging from fundamental physics to medical research. By analysing images of single light-emitting molecules, researchers can pinpoint the positions of their centres to within single atomic widths. However, SMLM faces one significant shortcoming: it can only locate molecules in 2D, giving no information about their positions along the out-of-plane axis.

This problem can be partially overcome through the technique of metal-induced energy transfer (MIET), which introduces a thin metal film to the setup. The idea is that the apparatus picks up changes in the molecule’s fluorescence that are caused by the molecule coupling to collective excitations of surface plasmons in the film. Since this light emission varies with distance from the film, researchers can use MIET to calculate the molecule’s distance relative to the film surface, allowing them to locate it along the third axis. Yet with current versions of the technique, the accuracy of this out-of-plane measurement is 3–5 times worse than that of lateral localization, in the plane of the film.

Sep 16, 2019

Real Artificial Gravity for SpaceX’s Starship

Posted by in categories: physics, space travel

Despite the many, many problems we face in the world today, it is still an exciting time to be alive! As we speak, mission planners and engineers are developing the concepts that will soon take astronauts on voyages beyond Low Earth Orbit (LEO) for the first time in almost fifty years. In addition to returning to the Moon, we are also looking further afield to Mars and other distant places in the Solar System.

This presents a number of challenges, not the least of which are the effects of prolonged exposure to radiation and microgravity. And whereas there are many viable options for protecting crews from radiation, gravity remains a bit of a stumbling block. To address this, Youtuber smallstars has proposed a concept that he calls the Gravity Link Starship (GLS), a variation of SpaceX’s Starship that will be able to provide its own artificial gravity.

Continue reading “Real Artificial Gravity for SpaceX’s Starship” »

Sep 16, 2019

Scientists Use Nanoparticles to Send Cancer Fighting Agent to Cells

Posted by in categories: biotech/medical, nanotechnology

When it comes to finding new treatments for cancer scientitists have been focusing on an anti-cancer agent known as Small interfering ribonucleic acid (siRNA). But getting this agent to cancer cells has been a challenge.


Scientists have developed a platform using nanoparticles to send a cancer-fighting agent to cells.

Sep 16, 2019

A Game-Changing Way to Predict Volcanic Eruptions

Posted by in category: futurism

The revolutionary technique works like a weather forecast.

Sep 16, 2019

Researchers build microscopic biohybrid robots propelled by muscles, nerves

Posted by in categories: bioengineering, robotics/AI

Researchers have developed soft robotic devices driven by neuromuscular tissue that triggers when stimulated by light—bringing mechanical engineering one step closer to developing autonomous biobots.

In 2014, research teams led by mechanical science and engineering professor Taher Saif and bioengineering professor Rashid Bashir at the University of Illinois worked together to developed the first self-propelled biohybrid swimming and walking biobots powered by beating derived from rats.

“Our first swimmer study successfully demonstrated that the bots, modeled after sperm cells, could in fact swim,” Saif said. “That generation of singled-tailed bots utilized cardiac tissue that beats on its own, but they could not sense the environment or make any decisions.”

Sep 16, 2019

How factory farming destroys our microbiomes

Posted by in category: food

Good bacteria are our friends. We need to protect them.

Sep 16, 2019

Astronomers Detect the Most Massive Neutron Star Yet

Posted by in category: space

Astronomers have discovered the most massive example yet of the dead stars known as neutron stars, one almost too massive to exist, a new study finds.

Sep 16, 2019

Gene-Hacking Mosquitoes to Be Infertile Backfired Spectacularly

Posted by in categories: biotech/medical, genetics

On its surface, the plan was simple: gene-hack mosquitoes so their offspring immediately die, mix them with disease-spreading bugs in the wild, and watch the population drop off. Unfortunately, that didn’t quite pan out.

The genetically-altered mosquitoes did mix with the wild population, and for a brief period the number of mosquitoes in Jacobino, Brazil did plummet, according to research published in Nature Scientific Reports last week. But 18 months later the population bounced right back up, New Atlas reports — and even worse, the new genetic hybrids may be even more resilient to future attempts to quell their numbers.

Sep 16, 2019

Einstein’s black holes are not the black holes we see in reality

Posted by in categories: cosmology, physics

Field notes from space-time | We’re only just grasping how cosmic black holes and Einstein’s theories relate – and that deepens our sense of wonder, says Chanda Prescod-Weinstein.

Sep 16, 2019

Johns Hopkins Breakthrough Opens the Door for Stem Cell Transplants to Repair the Brain

Posted by in categories: biotech/medical, neuroscience

Transplanted brain stem cells survive without anti-rejection drugs in mice. By exploiting a feature of the immune system, researchers open the door for stem cell transplants to repair the brain.

In experiments in mice, Johns Hopkins Medicine researchers say they have developed a way to successfully transplant certain protective brain cells without the need for lifelong anti-rejection drugs.

A report on the research, published today (September 16, 2019) in the journal Brain, details the new approach, which selectively circumvents the immune response against foreign cells, allowing transplanted cells to survive, thrive and protect brain tissue long after stopping immune-suppressing drugs.