Menu

Blog

Page 8144

Feb 19, 2019

Breakthrough in the search for graphene-based electronics

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

For 15 years, scientists have tried to exploit the “miracle material” graphene to produce nanoscale electronics. On paper, graphene should be great for just that: it is ultra-thin—only one atom thick and therefore two-dimensional, it is excellent for conducting electrical current, and holds great promise for future forms of electronics that are faster and more energy efficient. In addition, graphene consists of carbon atoms – of which we have an unlimited supply.

In theory, graphene can be altered to perform many different tasks within e.g. electronics, photonics or sensors simply by cutting tiny patterns in it, as this fundamentally alters its . One “simple” task, which has turned out to be surprisingly difficult, is to induce a band gap—which is crucial for making transistors and optoelectronic devices. However, since graphene is only an atom thick all of the atoms are important and even tiny irregularities in the pattern can destroy its properties.

“Graphene is a fantastic material, which I think will play a crucial role in making new nanoscale electronics. The problem is that it is extremely difficult to engineer the electrical properties,” says Peter Bøggild, professor atDTU Physics.

Continue reading “Breakthrough in the search for graphene-based electronics” »

Feb 19, 2019

The Man Who Would Stop Time

Posted by in categories: biotech/medical, life extension

Circa 2011


Bill Andrews’s feet are so large, he tells me, that back when he was 20 he was able to break the Southern California barefoot-waterskiing distance record the first time he put skin to water. Then he got ambitious and went for the world speed record. When the towrope broke at 80 mph, he says, “they pulled me out of the water on a stretcher.”

The soles of the size-15 New Balances that today shelter those impressive feet strike a steady clap-clap on the macadam as Andrews and I lope down a path along the Truckee River that takes us away from the clutter of cut-rate casino hotels, strip malls and highway exit ramps that is downtown Reno, Nevada. Andrews, 59, is a lean 6-foot-3 and wears a close-cropped salt-and-pepper Vandyke and, for today’s outing, a silver running jacket, nicely completing a package that suggests a Right Stuff–era astronaut. He is in fact one of the better ultramarathoners in America. I am an out-of-shape former occasional runner, so it gives me pause to listen as Andrews describes his racing exploits. “I can run 100 miles, finish, turn around, and meet friends of mine on the course who are still coming in,” he says. “I’ve been in many races where I’m stepping over bodies of people who have collapsed, and I’m feeling great.”

Continue reading “The Man Who Would Stop Time” »

Feb 19, 2019

Researchers develop new therapeutic approach to treating osteoarthritis

Posted by in categories: biotech/medical, engineering

Researchers from Texas A&M University, led by Dr. Akhilesh K. Gaharwar, have developed a new way to deliver treatment for cartilage regeneration.

Gaharwar, assistant professor in the Department of Biomedical Engineering at Texas A&M, said the nanoclay-based platform for sustained and prolonged delivery of protein therapeutics has the potential to impact treating osteoarthritis, a degenerative disease that affects nearly 27 million Americans and is caused by breakdown of cartilage that can lead to damage of the underlying bone.

As America’s population ages, the number of osteoarthritis incidences is likely to increase. One of the greatest challenges with treating osteoarthritis and subsequent joint damage is repairing the damaged tissue, especially as cartilage tissue is difficult to regenerate.

Continue reading “Researchers develop new therapeutic approach to treating osteoarthritis” »

Feb 19, 2019

New machine learning technique rapidly analyzes nanomedicines for cancer immunotherapy

Posted by in categories: biotech/medical, genetics, nanotechnology, robotics/AI

  • Spherical nucleic acids are a class of personalized medicines for treating cancer and other diseases
  • SNAs are challenging to optimize because their structures can vary in many ways
  • Northwestern University team developed a library approach and machine learning to rapidly synthesize, analyze and select for potent SNA medicines

EVANSTON, Ill.— With their ability to treat a wide a variety of diseases, (SNAs) are poised to revolutionize medicine. But before these digitally designed nanostructures can reach their full potential, researchers need to optimize their various components.

A Northwestern University team led by nanotechnology pioneer Chad A. Mirkin has developed a direct route to optimize these challenging particles, bringing them one step closer to becoming a viable treatment option for many forms of cancer, , neurological disorders and more.

Read more

Feb 19, 2019

The Pentagon compiled research into invisibility cloaking, wormholes, and warp drive

Posted by in categories: cosmology, military, space travel

Documents disclosing the research came out this month.

Read more

Feb 19, 2019

Neuroscience confirms your subconscious shapes your reality

Posted by in category: neuroscience

Groundbreaking neuroscience confirms what Sigmund Freud first theorized: that what we believe to be the objective reality surrounding us is actually formed by our subconscious. David Eagleman explains:

Read more

Feb 19, 2019

How Measles Hacks the Body—and Harms Its Victims for Years

Posted by in category: biotech/medical

The virus is the most contagious in the world, exploiting the human body’s immune system to spread with extreme agility and harming its victims for years.

Read more

Feb 19, 2019

TCL is working on a foldable phone that bends into a smartwatch

Posted by in category: mobile phones

It’s one of a family of foldable devices in development with the Chinese company, best known for budget televisions.

    by

  • Shara Tibken

Read more

Feb 19, 2019

Bioengineers create ultrasmall, light-activated electrode for neural stimulation

Posted by in categories: bioengineering, biotech/medical, neuroscience

Neural stimulation is a developing technology that has beneficial therapeutic effects in neurological disorders, such as Parkinson’s disease. While many advancements have been made, the implanted devices deteriorate over time and cause scarring in neural tissue. In a recently published paper, the University of Pittsburgh’s Takashi D. Y. Kozai detailed a less invasive method of stimulation that would use an untethered ultrasmall electrode activated by light, a technique that may mitigate damage done by current methods.

Read more

Feb 19, 2019

Elon Musk Wants to Create Human-A.I. Link and “Make Everyone Hyper-Smart”

Posted by in categories: Elon Musk, robotics/AI

Circa 2018


The CEO is worried about unchecked machines.

Read more