Menu

Blog

Page 7567

May 19, 2020

Neural Volumes: Learning Dynamic Renderable Volumes from Images

Posted by in categories: biological, neuroscience

Modeling and rendering of dynamic scenes is challenging, as natural scenes often contain complex phenomena such as thin structures, evolving topology, translucency, scattering, occlusion, and biological motion. Mesh-based reconstruction and tracking often fail in these cases, and other approaches (e.g., light field video) typically rely on constrained viewing conditions, which limit interactivity. We circumvent these difficulties by presenting a learning-based approach to representing dynamic objects inspired by the integral projection model used in tomographic imaging. The approach is supervised directly from 2D images in a multi-view capture setting and does not require explicit reconstruction or tracking of the object. Our method has two primary components: an encoder-decoder network that transforms input images into a 3D volume representation, and a differentiable ray-marching operation that enables end-to-end training. By virtue of its 3D representation, our construction extrapolates better to novel viewpoints compared to screen-space rendering techniques. The encoder-decoder architecture learns a latent representation of a dynamic scene that enables us to produce novel content sequences not seen during training. To overcome memory limitations of voxel-based representations, we learn a dynamic irregular grid structure implemented with a warp field during ray-marching. This structure greatly improves the apparent resolution and reduces grid-like artifacts and jagged motion. Finally, we demonstrate how to incorporate surface-based representations into our volumetric-learning framework for applications where the highest resolution is required, using facial performance capture as a case in point.

Video Player

May 19, 2020

Neural Network Software Market 2026 Expected to grow with highest CAGR: Starmind, NeuralWare, Slagkryssaren AB, AND Corporation, Slashdot Media, XENON Systems Pty Ltd, Xilinx Inc

Posted by in categories: business, robotics/AI

This study also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors and Porter’s Five Forces Analysis. Neural Network Software market report all-inclusively estimates general market conditions, the growth prospects in the market, possible restrictions, significant industry trends, market size, market share, sales volume and future trends. The report starts by an introduction about the company profiling and a comprehensive review about the future events, sales strategies, Investments, business marketing strategy, future products, new geographical markets, customer actions or behaviors with the help of 100+ market data Tables, Pie Charts, Graphs & Figures spread through Pages for easy understanding. Neural Network Software market report has been designed by keeping in mind the customer requirements which assist them in increasing their return on investment (ROI and this research also provides a deep insight into the activities of key players such as Starmind, NeuralWare, Slagkryssaren AB, AND Corporation, Slashdot Media, XENON Systems Pty Ltd, Xilinx Inc and others. and others.

Get Full PDF Sample Copy of Report (Including Full TOC, List of Tables & Figures, Chart) at @ https://www.databridgemarketresearch.com/request-a-sample/?d…are-market

Global neural network software market is set to witness a healthy CAGR of 35.70% in the forecast period of 2019 to 2026.

May 19, 2020

A system to produce context-aware captions for news images

Posted by in category: computing

Computer systems that can automatically generate image captions have been around for several years. While many of these techniques perform considerably well, the captions they produce are typically generic and somewhat uninteresting, containing simple descriptions such as “a dog is barking” or “a man is sitting on a bench.”

Alasdair Tran, Alexander Mathews and Lexing Xie at the Australian National University have been trying to develop new systems that can generate more sophisticated and descriptive image captions. In a paper recently pre-published on arXiv, they introduced an automatic captioning system for news images that takes the general context behind an image into account while generating new captions. The goal of their study was to enable the creation of captions that are more detailed and more closely resemble those written by humans.

“We want to go beyond merely describing the obvious and boring visual details of an image,” Xie told TechXplore. “Our lab has already done work that makes image captions sentimental and romantic, and this work is a continuation on a different dimension. In this new direction, we wanted to focus on the context.”

May 19, 2020

Controlling spatter during laser powder bed fusion found to reduce defects in metal-based 3D printing

Posted by in categories: 3D printing, biotech/medical

A team of researchers with members from Lawrence Livermore National Laboratory, Wright-Patterson Air Force Base and the Barnes Group Advisors found that controlling spatter during laser-powder bed fusion can reduce defects in metal-based 3D printing. In their paper published in the journal Science, the group describes studying the additive manufacturing printing methodology and what they learned about it. Andrew Polonsky and Tresa Pollock with the University of California, Santa Barbara have published a Perspective piece on the work done by the team in the same journal issue.

As additive manufacturing printing methodologies mature, are being tested to find out if they might be used in 3D printers to create new products. In recent years, this has extended to metals. One such technique is called laser-powder bed fusion (L-PBF). It involves the use of a high-powered laser to melt and fuse metallic powders layer by layer to produce a 3D part. It has been hoped that the technique could eventually be used for aerospace and biomedical applications. But thus far, such efforts have fallen short due to the large number of defects that occur with the process. In this new effort, the researchers have discovered a way to reduce such defects, perhaps paving the way for the technique to finally fulfill its promise.

To better understand why the L-PBF process leads to so many defects (such as undesired pores) the researchers conducted X-ray synchrotron experiments and built predictive multi-physics models to gain a better understanding of what occurs during printing. One of their goals was to better understand how energy is absorbed during with powder layers that are only a few particles thick.

May 19, 2020

A senior engineer has left SpaceX to work for Relativity Space

Posted by in category: space travel

Dunn played an important role in the history of SpaceX.

May 19, 2020

Deep Learning Architectures for Action Recognition

Posted by in category: robotics/AI

A review of the state of the art from 2014 to 2019.

May 19, 2020

Scientists find brain center that ‘profoundly’ shuts down pain

Posted by in categories: biotech/medical, neuroscience

A Duke University research team has found a small area of the brain in mice that can profoundly control the animals’ sense of pain.

Somewhat unexpectedly, this center turns off, not on. It’s also located in an area where few people would have thought to look for an anti-pain center, the amygdala, which is often considered the home of negative emotions and responses, like the fight or flight response and general anxiety.

“People do believe there is a central place to relieve pain, that’s why placebos work,” said senior author Fan Wang, the Morris N. Broad Distinguished Professor of neurobiology in the School of Medicine. “The question is where in the brain is the center that can turn off pain.”

May 19, 2020

Lysosome to mitochondria communication regulates longevity

Posted by in categories: biotech/medical, life extension

As people get older, they often feel less energetic, mobile or active. This may be due in part to a decline in mitochondria, the tiny powerhouses inside of our cells, which provide energy and regulate metabolism. In fact, mitochondria decline with age not only in humans, but in many species. Why they do so is not well understood. Scientists at the Max Planck Institute for Biology of Ageing in Cologne set out to understand how mitochondrial function is diminished with age and to find factors that prevent this process. They found that communication between mitochondria and other parts of the cell plays a key role.

For their studies, the scientists used the simple roundworm, Caenorhabditis elegans, an important model system for aging research. Over half the genes of this animal are similar to those found in humans, and their also decline with age. From their research, the scientists found a called NFYB-1 that switches on and off genes affecting mitochondrial activity, and which itself goes down during aging. In mutant worms lacking this protein, mitochondria don’t work as well and worms don’t live as long.

Unexpectedly, the scientists discovered that NFYB-1 steers the activity of mitochondria through another part of the cell called the lysosome, a place where basic molecules are broken down and recycled as nutrients. “We think the lysosome talks with the mitochondria through special fats called cardiolipins and ceramides, which are essential to ,” says Max Planck Director, Adam Antebi, whose laboratory spearheaded the study. Remarkably, simply feeding the NFYB-1 mutant worms cardiolipin restored and worm health in these strains.

May 19, 2020

Is the Brain a Useful Model for Artificial Intelligence?

Posted by in category: robotics/AI

Thinking machines think just like us—but only up to a point.

May 19, 2020

Scientists discover ‘immune scars’ on patients with lung infections

Posted by in category: biotech/medical

Patients recovering from severe lung infections develop “immunological scars” that stifle their body’s immune response and heighten their risk of contracting pneumonia, a common killer of COVID-19 sufferers, researchers said Monday.

Studies in both humans and mice showed that the body’s is temporarily switched off after some severe infections, rendering more vulnerable to new bacterial or viral diseases.

A team of researchers from the University of Melbourne’s Peter Doherty Institute for Infection and Immunity and the University Hospital of Nantes found that the cells that form the ’s first line of defence—macrophages—were “paralysed” after severe .