Menu

Blog

Page 7356

Oct 7, 2019

New research furthers understanding about what shapes human gut microbiome

Posted by in categories: biological, genetics, health

EVANSTON, Ill. — A new Northwestern University study finds that despite human’s close genetic relationship to apes, the human gut microbiome is more similar to that of Old World monkeys like baboons than to that of apes like chimpanzees.

These results suggest that human ecology has had a stronger impact in shaping the human gut microbiome than genetic relationships. The results also suggest the human gut microbiome may have unique characteristics compared to other primates, including increased flexibility.

“Understanding what factors shaped the human gut microbiome over evolutionary time can help us understand how gut microbes may have influenced adaptation and evolution in our ancestors and how they interact with our biology and health today,” said Katherine Amato, lead author of the study and assistant professor of anthropology in the Weinberg College of Arts and Sciences at Northwestern.

Oct 7, 2019

The DNA clouds that shield unkillable tardigrades from radiation

Posted by in categories: biotech/medical, space

It takes something truly extraordinary, like maybe the death of the Sun, to kill the near-indestructible invertebrate known as the tardigrade. Crash-landings on the Moon, a lack of oxygen and conditions in the darkest corners of the ocean don’t appear pose a threat to this critter’s livelihood. Scientists studying these so-called water bears have uncovered a neat trick they employ to endure inhospitable conditions, using a unique protein to generate protective clouds around their DNA.

Tardigrades measure no more than a millimeter long, but possess an indomitability that would make even nature’s largest and hardiest creatures jealous. Key to their survival is an ability to enter a suspended and extremely dehydrated state of being called anhydrobiosis, in which their metabolism is put on hold until the surrounding conditions are more favorable to a regular life.

This capability has seen tardigrades endure temperatures as high as 150º C (302º F) and as low as −272º C (−457.6º F). It has seen them studied in the vacuum of space and exist amongst intense pressures at the bottom of the ocean. When an Israeli spacecraft carrying tardigrades crash-landed on the Moon in August, it inspired some dramatic headlines around the possibility of the near-indestructible creatures colonizing Earth’s only natural satellite.

Oct 7, 2019

Dark matter may be older than the big bang, study suggests

Posted by in categories: cosmology, particle physics

Dark matter, which researchers believe make up about 80% of the universe’s mass, is one of the most elusive mysteries in modern physics. What exactly it is and how it came to be is a mystery, but a new Johns Hopkins University study now suggests that dark matter may have existed before the Big Bang.

The study, published August 7 in Physical Review Letters, presents a new idea of how was born and how to identify it with astronomical observations.

“The study revealed a new connection between particle physics and astronomy. If dark matter consists of new particles that were born before the Big Bang, they affect the way galaxies are distributed in the sky in a unique way. This connection may be used to reveal their identity and make conclusions about the times before the Big Bang too,” says Tommi Tenkanen, a postdoctoral fellow in Physics and Astronomy at the Johns Hopkins University and the study’s author.

Oct 7, 2019

SpaceX Starship: Detailed renders reveal latest design changes to Elon Musk’s Mars rocket

Posted by in categories: Elon Musk, space travel

SPACEX STARSHIP is Elon Musk’s ambitious plan to carry crew and cargo to the Moon, Mars and beyond. Now, the SpaceX CEO has revealed significant tweaks to the Starship’s extraordinary design.

Oct 7, 2019

Researchers develop quantum-mechanical variant of the twin paradox

Posted by in categories: particle physics, quantum physics, space

One of the fundamental challenges of physics is the reconciliation of Einstein’s theory of relativity and quantum mechanics. The necessity to critically question these two pillars of modern physics arises, for example, from extremely high-energy events in the cosmos, which so far can only ever be explained by one theory at a time, but not both theories in harmony. Researchers around the world are therefore searching for deviations from the laws of quantum mechanics and relativity that could open up insights into a new field of physics.

For a recent publication, scientists from Leibniz University Hannover and Ulm University have taken on the twin paradox known from Einstein’s special theory of relativity. This thought experiment revolves around a pair of twins: While one brother travels into space, the other remains on Earth. Consequently, for a certain period of time, the twins are moving in different orbits in space. The result when the pair meets again is quite astounding: The twin who has been travelling through space has aged much less than his brother who stayed at home. This phenomenon is explained by Einstein’s description of time dilation: Depending on the speed and where in the gravitational field two clocks move relative to each other, they tick at different speeds.

For the publication in Science Advances, the authors assumed a quantum-mechanical variant of the twin paradox with only one twin. Thanks to the superposition principle of , this twin can move along two paths at the same time. In the researchers’ , the twin is represented by an . “Such clocks use the quantum properties of atoms to measure time with high precision. The atomic clock itself is therefore a quantum-mechanical object and can move through space-time on two paths simultaneously due to the superposition principle. Together with colleagues from Hannover, we have investigated how this situation can be realised in an experiment,” explains Dr. Enno Giese, research assistant at the Institute of Quantum Physics in Ulm. To this end, the researchers have developed an experimental setup for this scenario on the basis of a quantum-physical model.

Oct 7, 2019

Globally, farmland is becoming more scarce

Posted by in category: food

That’s why this tech company has turned to growing food out of thin air.

Oct 7, 2019

Could a robot be prime minister? Machines will soon be smart enough to run the world, says futurist

Posted by in categories: biotech/medical, robotics/AI, transhumanism

Radio program The Current had me on this morning discussing #transhumanism, specifically #robots & #AI running for political office. It’s Canada’s most listened to radio program with millions of listeners. Here’s a fun write-up of it:


We ask if we should ditch flesh-and-blood politicians, and give the robots a go at leadership.

Oct 7, 2019

Want to live a healthier, longer life? Try taking more prebiotics — also, don’t eat sometimes

Posted by in categories: food, life extension

In this video, bestselling author Dave Asprey explains.

Oct 7, 2019

China grew a plant on the moon — it sprouted two leaves, data indicates

Posted by in category: space

It marks the first time a plant has been grown on the moon.

Oct 7, 2019

New silk materials can wrinkle into detailed patterns, then unwrinkle to be ‘reprinted’

Posted by in categories: electronics, materials

Researchers at Tufts University School of Engineering have developed silk materials that can wrinkle into highly detailed patterns—including words, textures and images as intricate as a QR code or a fingerprint. The patterns take about one second to form, are stable, but can be erased by flooding the surface of the silk with vapor, allowing the researchers to “reverse” the printing and start again. In an article published today in the Proceedings of the National Academy of Sciences, the researchers demonstrate examples of the silk wrinkle patterns, and envision a wide range of potential applications for optical electronic devices.

The takes advantage of the natural ability of fiber proteins—fibroin—to undergo a change of conformation in response to external conditions, including exposure to , methanol and UV radiation. Water and methanol vapor, for example, can soak into the fibers and interfere with hydrogen bond cross links in the silk fibroin, causing it to partially ‘unravel’ and release tension in the fiber. Taking advantage of this property, the researchers fabricated a silk surface from dissolved fibroin by depositing it onto a thin plastic membrane (PDMS). After a cycle of heating and cooling, the silk surface of the silk/PDMS bilayer folds into nanotextured wrinkles due to the different mechanical properties of the layers.

Exposing any part of that wrinkled surface to water or methanol vapor causes the fibers to relax and the wrinkles to flatten. The smooth surface transmits more than 80% of light, while the wrinkled surface only allows 20% or less through, creating a visible contrast and the perception of a printed pattern. The surface can be selectively exposed to vapor using a patterned mask, resulting in a matched pattern in the textured silk. Patterns may also be created by depositing water using inkjet printing. The resolution of this printing method is determined by the resolution of the mask itself, or the nozzle diameter of the inkjet printer.