Menu

Blog

Page 6415

Aug 7, 2020

Two MIT students just solved Richard Feynman’s famed physics puzzle

Posted by in category: physics

Richard Feynman once asked a silly question. Two MIT students just answered it.

Aug 7, 2020

Social Justice (periodical)

Posted by in category: futurism

Would you protect the rights of A bigot?

The Jews of Europe were characterized in the following ways by the Fascists:

1. Bigoted because of “Jewish Chosenness” 2. A foreign element from a different continent 3. An over privileged foreign minority 4. Destructive of indigenous ethnic culture.

Continue reading “Social Justice (periodical)” »

Aug 7, 2020

Algorithm predicts the compositions of new materials

Posted by in categories: information science, robotics/AI, solar power, sustainability

A machine-learning algorithm that can predict the compositions of trend-defying new materials has been developed by RIKEN chemists1. It will be useful for finding materials for applications where there is a trade-off between two or more desirable properties.

Artificial intelligence has great potential to help scientists find new materials with desirable properties. A that has been trained with the compositions and properties of known materials can predict the properties of unknown materials, saving much time in the lab.

But discovering new materials for applications can be tricky because there is often a trade-off between two or more material properties. One example is organic materials for , where it is desired to maximize both the voltage and current, notes Kei Terayama, who was at the RIKEN Center for Advanced Intelligence Project and is now at Yokohama City University. “There’s a trade-off between voltage and current: a material that exhibits a high voltage will have a low current, whereas one with a high current will have a low voltage.”

Aug 7, 2020

An electrical switch for magnetism

Posted by in categories: computing, nanotechnology, particle physics

NUS physicists have demonstrated the control of magnetism in a magnetic semiconductor via electrical means, paving the way for novel spintronic devices.

Semiconductors are the heart of information-processing technologies. In the form of a transistor, semiconductors act as a switch for , allowing switching between binary states zero and one. Magnetic materials, on the other hand, are an essential component for information storage devices. They exploit the spin degree of freedom of electrons to achieve memory functions. Magnetic semiconductors are a unique class of materials that allow control of both the electrical charge and spin, potentially enabling information processing and memory operations in a single platform. The key challenge is to control the electron spins, or magnetisation, using electric fields, in a similar way a transistor controls electrical charge. However, magnetism typically has weak dependence on electric fields in magnetic semiconductors, and the effect is often limited to .

A research team led by Prof Goki EDA from the Department of Physics and the Department of Chemistry, and the Centre for Advanced 2-D Materials, NUS, in collaboration with Prof Hidekazu KUREBAYASHI from the London Centre for Nanotechnology, University College London, discovered that the magnetism of a magnetic semiconductor, Cr2Ge2Te6, shows exceptionally strong response to applied electric fields. With electric fields applied, the material was found to exhibit ferromagnetism (a state in which electron spins spontaneously align) at temperatures up to 200 K (−73°C). At such temperatures, ferromagnetic order is normally absent in this material.

Aug 7, 2020

New Intelligence Shows China Is Building More Type-075 Assault Carriers

Posted by in category: military

The Chinese Navy is expanding at an incredible pace, rapidly outstripping almost all other navies. A year ago it had no amphibious assault carriers (termed landing helicopter docks). These large helicopter carriers are often the most powerful ships in many navies, and almost all navies want them. Fast forward a year’s time and they will likely have a fleet of them second in size only to the U.S. Navy. And China is building them quicker.

The rapid construction of Chinese Navy (PLAN) warships is hard to keep up with. China’s new Assault Carriers are known as the Type-075 LHD. They have already launched two in the past year. And now images have emerged on Chinese-language social media that, perhaps unwittingly, reveal yet another.

This equates to an assembly time in dry dock of about 6 months. It is difficult to make direct comparisons to the U.S. Navy because the construction approaches vary, and America is not in the same rush. But for context the U.S. Navy’s second America Class assault carrier, USS Tripoli, was laid down in June 2014 and launched in May 2017. 2 years and 10 months later.

Aug 7, 2020

New science behind biodegradable algae-based flip-flops

Posted by in categories: biological, chemistry, science, sustainability

As the world’s most popular shoe, flip-flops account for a troubling percentage of plastic waste that ends up in landfills, on seashores and in our oceans. Scientists at the University of California San Diego have spent years working to resolve this problem, and now they have taken a step farther toward accomplishing this mission.

Sticking with their chemistry, the team of researchers formulated , made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. The results of their study are published in Bioresource Technology Reports and describe the team’s successful development of these sustainable, consumer-ready and .

The research was a collaboration between UC San Diego and startup company Algenesis Materials—a and technology company. The project was co-led by graduate student Natasha Gunawan from the labs of professors Michael Burkart (Division of Physical Sciences) and Stephen Mayfield (Division of Biological Sciences), and by Marissa Tessman from Algenesis. It is the latest in a series of recent research publications that collectively, according to Burkart, offer a complete solution to the plastics problem—at least for polyurethanes.

Aug 7, 2020

Converting CO2 to algae for bioplastic production

Posted by in categories: 3D printing, sustainability

Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely replace synthetic plastics over time.

Klarenbeek and Dros cultivate algae – aquatic plants – which they then dry and process into a material that can be used to 3D print objects.

The designers believe that the algae polymer could be used to make everything from shampoo bottles to tableware or rubbish bins, eventually entirely replacing plastics made from fossil fuels like oil.

Aug 7, 2020

Covid-19 is turning skeptical doctors into telehealth believers

Posted by in category: biotech/medical

“When I first heard [of these startups], I thought this was going to be bad for the field,” Ramasamy tells Inverse. “This is going to be a disservice to our patients. And more importantly, I thought there was going to be some harm involved on the patient side.”

Direct-to-consumer telehealth companies aim to provide accessible, speedy, stigma-free care for everything from erectile dysfunction to herpes — without a physical exam. However, troubled by the risks of mistakes and misdiagnoses, as well as privacy breaches, some physicians and patients have been skeptical.

Then Covid-19 hit. In a pandemic that makes a visit to the doctor riskier than ever before, telehealth has seemingly come to the rescue, promising efficient care from the safety of home.

Aug 7, 2020

Blackout hits large area of NYC, including Upper West Side and Harlem

Posted by in category: energy

A widespread power outage left about 130,000 customers in darkness across a large area of Upper Manhattan early Friday, a Con Edison spokesman said.

Three networks in the utility’s transmission system in Manhattan lost their electricity supply at 5:13 a.m., Con Ed spokesman Philip O’Brien told The Post at 6:30 a.m., adding that the power has been restored.

“And we’re back! Here’s the moment electricity returned to upper Manhattan,” @kendisgibson said in a tweet.

Aug 7, 2020

Oldest enzyme in cellular respiration isolated

Posted by in categories: biological, habitats

In the first billion years, there was no oxygen on Earth. Life developed in an anoxic environment. Early bacteria probably obtained their energy by breaking down various substances by means of fermentation. However, there also seems to have been a kind of “oxygen-free respiration.” This was suggested by studies on primordial microbes that are still found in anoxic habitats today.

“We already saw ten years ago that there are genes in these microbes that perhaps encode for a primordial respiration . Since then, we—as well as other groups worldwide—have attempted to prove the existence of this respiratory enzyme and to isolate it. For a long time unsuccessfully because the complex was too fragile and fell apart at each attempt to isolate it from the membrane. We found the fragments, but were unable to piece them together again,” explains Professor Volker Müller from the Department of Molecular Microbiology and Bioenergetics at Goethe University.

Through hard work and perseverance, his doctoral researchers Martin Kuhns and Dragan Trifunovic then achieved a breakthrough in two successive doctoral theses. “In our desperation, we at some point took a heat-loving bacterium, Thermotoga maritima, which grows at temperatures between 60 and 90°C,” explains Trifunovic, who will shortly complete his doctorate. “Thermotoga also contains Rnf genes, and we hoped that the Rnf enzyme in this bacterium would be a bit more stable. Over the years, we then managed to develop a method for isolating the entire Rnf enzyme from the membrane of these bacteria.”