Menu

Blog

Page 6103

Jun 19, 2021

CaAKG — The Science Behind Rejuvant | Tom Weldon Interview Series Part I

Posted by in categories: biotech/medical, law, life extension, media & arts, science

This product came out months ago with some shocking numbers as to effect. But those effects were in mice tests. 10–20% increase in lifespan and 55% increase in healthspan. It is AKG, Rejuvant, it’s a product you can buy now. There will be a part 2 of this interview so I hope to hear about human data.


Here we present an interview with Tom Weldon the founder and CEO of Ponce de Leon Health, which makes Rejuvant a Calcium AKG based supplement. In this video Tom talks through the process and reasons for selecting CaAKG. He also talks about some of the other results that they found in their tests, especially with respect to mixing different supplements and their combined effects.

Continue reading “CaAKG — The Science Behind Rejuvant | Tom Weldon Interview Series Part I” »

Jun 19, 2021

Compact quantum computer for server centers

Posted by in categories: computing, engineering, quantum physics, space

Quantum computers developed to date have been one-of-a-kind devices that fill entire laboratories. Now, physicists at the University of Innsbruck have built a prototype of an ion trap quantum computer that can be used in industry. It fits into two 19-inch server racks like those found in data centers throughout the world. The compact, self-sustained device demonstrates how this technology will soon be more accessible.

Over the past three decades, fundamental groundwork for building quantum computers has been pioneered at the University of Innsbruck, Austria. As part of the EU Flagship Quantum Technologies, researchers at the Department of Experimental Physics in Innsbruck have now built a demonstrator for a compact ion trap quantum . “Our experiments usually fill 30-to 50-square-meter laboratories,” says Thomas Monz of the University of Innsbruck. “We were now looking to fit the technologies developed here in Innsbruck into the smallest possible space while meeting standards commonly used in industry.” The new device aims to show that quantum computers will soon be ready for use in data centers. “We were able to show that compactness does not have to come at the expense of functionality,” adds Christian Marciniak from the Innsbruck team.

The individual building blocks of the world’s first compact quantum computer had to be significantly reduced in size. For example, the centerpiece of the quantum computer, the ion trap installed in a , takes up only a fraction of the space previously required. It was provided to the researchers by Alpine Quantum Technologies (AQT), a spin-off of the University of Innsbruck and the Austrian Academy of Sciences which aims to build a commercial quantum computer. Other components were contributed by the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena and laser specialist TOPTICA Photonics in Munich, Germany.

Jun 19, 2021

Order from disorder in the sarcomere

Posted by in category: futurism

Alpha-actinin can cross-link actin filaments and anchor them to the Z-disk in sarcomeres. Sarcomeres are a structural unit of myofibril in striated muscle. The FATZ (filamin, α-actinin-and telethonin-binding protein of the Z-disk) protein can interact with α-actinin and other core Z-disk proteins that contribute to myofibril assembly and maintenance. In a new report now on Science Advances, Antonio Sponga and an international research team in Austria, Germany, Russia, Poland and the U.K. detailed the first structure and cellular validation of the α-actinin-2 complex with a Z-disk partner, FATZ-1, to form a conformal ensemble. The FATZ-1 formed a tight fuzzy complex with α-actinin-2 with a proposed interaction mechanism via molecular recognition elements and secondary binding sites. The obtained integrative model revealed a polar architecture of the complex in combination with the FATZ-1 multivalent scaffold function to organize interaction partners and stabilize.

Sarcomere

The contracting muscles can regulate voluntary animal movement and involuntary heart beating, and sarcomeres are the basic contractile units of striated muscle cells. They are composed of arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Z-disk can form the boundary between adjacent sarcomeres, where anti-parallel actin filaments are anchored. A suitably stable anchoring structure must be generated by the interaction between myosin and actin. The Z-disk can fulfill this role by acting as a mechanical hub and a signaling platform to allow the transmission of tension during contraction and the duration and transmission of information of biomechanical stress. As a result, any mutations that disrupt the Z-disk architecture and function could risk causing skeletal and cardiac dysfunction.

Jun 19, 2021

Team discovers unexpected quantum behavior in kagome lattice

Posted by in categories: particle physics, quantum physics

An international team led by researchers at Princeton University has uncovered a new pattern of ordering of electric charge in a novel superconducting material.

The researchers discovered the new type of ordering in a material containing atoms arranged in a peculiar structure known as a kagome lattice. While researchers already understand how the electron’s spin can produce magnetism, these new results provide insights into the fundamental understanding of another type of quantum order, namely, orbital magnetism, which addresses whether the charge can spontaneously flow in a loop and produce magnetism dominated by extended orbital motion of electrons in a lattice of atoms. Such orbital currents can produce unusual quantum effects such as anomalous Hall effects and be a precursor to unconventional superconductivity at relatively high temperatures. The study was published in the journal Nature Materials.

“The discovery of a novel charge order in a kagome superconductor with topological band-structure which is also tuneable via a is a major step forward that could unlock new horizons in controlling and harnessing quantum topology and superconductivity for future fundamental physics and next-generation device research,” said M. Zahid Hasan, the Eugene Higgins Professor of Physics at Princeton University, who led the research team.

Jun 19, 2021

You need to see the last Supermoon of the year

Posted by in category: futurism

The Strawberry Supermoon is here to welcome summer time.


The Strawberry Supermoon will shine bright in the night skies on June 24, marking the third and last Supermoon of the year.

Jun 19, 2021

The 27.5-million-year cycle of geological activity

Posted by in category: existential risks

Geologic activity on Earth appears to follow a 27.5-million-year cycle, giving the planet a ‘pulse,’ according to a new study published in the journal Geoscience Frontiers.

“Many geologists believe that geological events are random over time. But our study provides statistical evidence for a common , suggesting that these geologic events are correlated and not random,” said Michael Rampino, a geologist and professor in New York University’s Department of Biology, as well as the study’s lead author.

Over the past five decades, researchers have proposed cycles of major geological events—including and mass extinctions on land and sea—ranging from roughly 26 to 36 million years. But early work on these correlations in the was hampered by limitations in the age-dating of geologic events, which prevented scientists from conducting quantitative investigations.

Jun 19, 2021

Windows 10 has only 4 years left to live (officially)

Posted by in category: computing

Microsoft will soon announce the next version of Windows on June 24. But before that happens, the company has already declared that it’s ending support for Windows 10 on October 14, 2025.

As noted by Thurrott, this is the first time the firm has specified an end date for the entire operating system. Windows 10 was originally unveiled in 2015, so it will have had a good run of 10 years — suits its name too.

What does it mean for you when Microsoft will end support for Windows 10? Well, for starters, you’ll stop receiving software updates, and there will be no new features added to the operating system.

Jun 18, 2021

Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity

Posted by in categories: computing, internet, particle physics, quantum physics, security

Circa 2017


The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security. The optical regular Internet would be used by default, but switched over to quantum Internet when sensitive data need to be transmitted. PT and and its counterpart in the quantum limit SPT would be the core components for both OIP and QIP in future Internet. Compared with electronic transistors, PTs/SPTs potentially have higher speed, lower power consumption and compatibility with fibre-optic communication systems.

Several schemes for PT6,7,8,9,10 and SPT11,12,13,14,15,16,17 have been proposed or even proof-of-principle demonstrated. All these prototypes exploit optical nonlinearities, i.e., photon-photon interactions18. However, photons do not interact with each other intrinsically, so indirect photon-photon interactions via electromagnetically induced transparency (EIT)19, photon blockade20 and Rydberg blockade21 were intensively investigated in this context over last two decades in either natural atoms22,23 or artificial atoms including superconducting boxes24,25 and semiconductor quantum dots (QDs)12,13. PT can seldom work in the quantum limit as SPT with the gain greater than 1 because of two big challenges, i.e., the difficulty to achieve the optical nonlinearities at single-photon levels and the distortion of single-photon pulse shape and inevitable noise produced by these nonlinearities26. The QD-cavity QED system is a promising solid-state platform for information and communication technology (ICT) due to their inherent scalability and matured semiconductor technology. But the photon blockade resulting from the anharmonicity of Jaynes-Cummings energy ladder27 is hard to achieve due to the small ratio of the QD-cavity coupling strength to the system dissipation rates12,13,28,29,30,31,32 and the strong QD saturation33. Moreover, the gain of this type of SPT based on the photon blockade is quite limited and only 2.2 is expected for In(Ga)As QDs12,13.

Continue reading “Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity” »

Jun 18, 2021

Earth tipped over on its side 84 million years ago and then righted itself, new study finds

Posted by in category: futurism

If you’d been able to stare at Earth from space during the late Cretaceous, when Tyrannosaurus rex and Triceratops roamed, it would’ve looked like the whole planet had tipped over on its side.

According to a new study, Earth tilted by 12 degrees about 84 million years ago.

“A 12-degree tilt of the Earth could affect latitude that same amount,” Sarah Slotznick, a geobiologist at Dartmouth College and co-author of the new study, told Insider.

Jun 18, 2021

Researchers Manipulate Antimatter With Laser for the First Time

Posted by in categories: futurism, particle physics

For the first time, scientists from the ALPHA collaboration at CERN reported successfully manipulating antimatter with the use of a laser system — potentially changing antimatter research and guide future experiments on the field.

Antimatter basically refers to the opposite of matter. Specifically, antimatter has sub-atomic particles whose properties (such as electric charge) are the opposite of normal matter. Most of the challenges surrounding the detection and observation of antimatter come from the fact that it immediately “annihilates” when it comes into contact with normal matter.

Continue reading “Researchers Manipulate Antimatter With Laser for the First Time” »