Menu

Blog

Page 5020

Sep 1, 2021

Semiconductor Shortage Idles Four Stellantis North America Assembly Plants

Posted by in categories: computing, transportation

The global semiconductor shortage has dealt another huge blow to Stellantis, with the automaker announcing new production issues. Semiconductors are the backbone of today’s automotive industry, controlling electronic features like driver-assist technologies, hybrid-electric systems, and even infotainment connectivity. This time, the shortage is affecting production for several of the company’s most popular vehicles in North America.

According to several United Auto Workers (UAW) local union websites and a report from the Automotive News, several Chrysler, Dodge, Jeep®, and Ram Truck vehicles will be affected by the latest shortage of semiconductor chips.

Continue reading “Semiconductor Shortage Idles Four Stellantis North America Assembly Plants” »

Sep 1, 2021

Mitochondrial Diseases May Potentially Be Improved by New Approach

Posted by in categories: biotech/medical, chemistry, genetics

Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focused on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. Now, scientists at Kyoto University’s Institute for Integrated Cell-Material Science (iCeMS) in Japan report a new approach where mutant DNA sequences inside cellular mitochondria can be eliminated using a bespoke chemical compound. The approach may lead to better treatments for mitochondrial diseases.

Their findings are published in the journal Cell Chemical Biology in a paper titled, “Targeted elimination of mutated mitochondrial DNA by a multi-functional conjugate capable of sequence-specific adenine alkylation.”

“Mutations in mitochondrial DNA (mtDNA) cause mitochondrial diseases, characterized by abnormal mitochondrial function,” the researchers wrote. “Although eliminating mutated mtDNA has potential to cure mitochondrial diseases, no chemical-based drugs in clinical trials are capable of selective modulation of mtDNA mutations. Here, we construct a class of compounds encompassing pyrrole-imidazole polyamides (PIPs), mitochondria-penetrating peptide, and chlorambucil, an adenine-specific DNA-alkylating reagent.”

Sep 1, 2021

Rainbow road sign film would be easier for autonomous vehicles to read

Posted by in categories: biotech/medical, robotics/AI

Autonomous vehicles need to operate in a complex environment, and recognizing traffic signs is an important part of that. A new microstructured material reflects light in rainbow rings, which can make traffic signs easier for computer vision systems to read.

Even outside of fully autonomous vehicles, traffic sign recognition has been part of driver assistance systems for over a decade. Normally the technology is based on recognizing colors or shapes of signs, but it doesn’t always get it right in the real world, where readability can be affected by lighting, weather, obstacles, damage, or something as simple as stickers on the sign.

So for the new study a team of researchers investigated a promising new material that could make the job easier. It’s a new form of retroreflective material, already commonly used to highlight signs and road markings by bouncing light from a vehicle’s headlights straight back at a driver. But rather than focus that light, the new material scatters it to create eye-catching patterns.

Sep 1, 2021

Using liquid metal to turn motion into electricity, even underwater

Posted by in categories: chemistry, energy, engineering

Researchers at North Carolina State University have created a soft and stretchable device that converts movement into electricity and can work in wet environments.

“Mechanical energy—such as the kinetic energy of wind, waves, and vibrations from motors—is abundant,” says Michael Dickey, corresponding author of a paper on the work and Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at NC State. “We have created a that can turn this type of mechanical motion into . And one of its remarkable attributes is that it works perfectly well underwater.”

Continue reading “Using liquid metal to turn motion into electricity, even underwater” »

Sep 1, 2021

Indication of Highly Correlated Electron Transport in Disordered Multilayer Ferritin Structures

Posted by in category: futurism

Indication of Strongly Correlated Electron Transport and Mott Insulator in Disordered Multilayer Ferritin Structures (DMFS)


PDF | Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin have been previously reported that indicate… | Find, read and cite all the research you need on ResearchGate.

Sep 1, 2021

Identification of neural oscillations and epileptiform changes in human brain organoids

Posted by in categories: biotech/medical, neuroscience

Excitatory/inhibitory fusion organoids OSCILLATE! In combination with iPSC technology this allows patient specific drug tailoring, as exemplified by Rett Syndrome in this preprint.

Sep 1, 2021

The Mathematical Structure of Integrated Information Theory

Posted by in categories: information science, mathematics, neuroscience, quantum physics

Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the theory which may serve as the starting point for future formal investigations and as an introduction suitable for researchers with a formal background.

Integrated Information Theory (IIT), developed by Giulio Tononi and collaborators [5, 45–47], has emerged as one of the leading scientific theories of consciousness. At the heart of the latest version of the theory [19, 25 26, 31 40] is an algorithm which, based on the level of integration of the internal functional relationships of a physical system in a given state, aims to determine both the quality and quantity (‘Φ value’) of its conscious experience.

Sep 1, 2021

Robo-penguin: how artificial birds are relaying the secrets of ocean currents

Posted by in category: futurism

They can go on research missions in stormy weather, dive to 150 metres and could soon be ‘singing’ signals. These penguin-like devices are helping to explain the eddies that are key to all life.

Sep 1, 2021

Reusable spaceplane demonstrator completes 5 test flights in 3 days

Posted by in category: space travel

Dawn Aerospace has successfully completed five test flights of its uncrewed Mk-II Aurora suborbital spaceplane in the skies over Glentanner Aerodrome on New Zealand’s South Island. The flights were conducted by the New Zealand-Dutch space transportation company from July 28 to 30 2021 at altitudes of up to 3,400 feet (1,036 m), with the prototype airframe fitted with surrogate jet engines.

The three-days of test flights to assess the airframe and avionics of the aircraft took place under a certificate issued to Dawn by the New Zealand Civil Aviation Authority (CAA), which allowed the Mk-II Aurora to operate from conventional airports without airspace restrictions after ground tests were completed.

Continue reading “Reusable spaceplane demonstrator completes 5 test flights in 3 days” »

Sep 1, 2021

DNA repair using CRISPR will be key to future space exploration

Posted by in categories: bioengineering, biotech/medical

DNA damage by radiation is a concern for space travelers. New experiments on the ISS show that CRISPR gene editing tools can function in space and can potentially be used to mitigate these effects.

Image credit: Norbert Kowalczyk Unsplash

Studying DNA repair is key to future space exploration, which could expose humans to risk of DNA damage caused by radiation. Conditions in space also could affect the way the body repairs such damage, potentially compounding that risk.