Menu

Blog

Page 4993

Sep 1, 2021

Scientists Discover Opportunity To Disrupt SARS-CoV-2 Dynamics, Prevent COVID-19 Transmission

Posted by in category: biotech/medical

A structural model of the SARS-CoV-2 spike protein as the virus fuses with host human cells reveals an opportunity to disrupt dynamics and halt transmission.

Scientists have simulated the transition of the SARS-CoV-2 spike protein structure from when it recognizes the host cell to when it gains entry, according to a study published on August 31 2021, in eLife.

The research shows that a structure enabled by sugar molecules on the spike protein could be essential for cell entry and that disrupting this structure could be a strategy to halt virus transmission.

Sep 1, 2021

New Electronic Material: Engineers Create Double Layer of Borophene for First Time

Posted by in categories: materials, particle physics

New material maintains borophene ’s electronic properties, offers new advantages.

For the first time, Northwestern University engineers have created a double layer of atomically flat borophene, a feat that defies the natural tendency of boron to form non-planar clusters beyond the single-atomic-layer limit.

Although known for its promising electronic properties, borophene — a single-atom.

Sep 1, 2021

Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial

Posted by in categories: biotech/medical, materials

Baricitinib is an oral selective Janus kinase 1/2 inhibitor with known anti-inflammatory properties. This study evaluates the efficacy and safety of baricitinib in combination with standard of care for the treatment of hospitalised adults with COVID-19.

In this phase 3 double-blind, randomised, placebo-controlled trial, participants were enrolled from 101 centres across 12 countries in Asia, Europe, North America, and South America. Hospitalised adults with COVID-19 receiving standard of care were randomly assigned (1:1) to receive once-daily baricitinib (4 mg) or matched placebo for up to 14 days. Standard of care included systemic corticosteroids, such as dexamethasone, and antivirals, including remdesivir. The composite primary endpoint was the proportion who progressed to high-flow oxygen, non-invasive ventilation, invasive mechanical ventilation, or death by day 28 assessed in the intention-to-treat population. All-cause mortality by day 28 was a key secondary endpoint, and all-cause mortality by day 60 was an exploratory endpoint; both were assessed in the intention-to-treat population. Safety analyses were done in the safety population defined as all randomly allocated participants who received at least one dose of study drug and who were not lost to follow-up before the first post-baseline visit. This study is registered with ClinicalTrials-gov, NCT04421027.


Although there was no significant reduction in the frequency of disease progression overall, treatment with baricitinib in addition to standard of care (including dexamethasone) had a similar safety profile to that of standard of care alone, and was associated with reduced mortality in hospitalised adults with COVID-19.

Continue reading “Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial” »

Sep 1, 2021

Mars rover sky watches, and spots a weird Martian moon

Posted by in category: space

While peering up at the hazy Martian sky, NASA’s Perseverance rover recently spotted one of Mars’ irregularly-shaped moons.

Sep 1, 2021

World’s First Penis And Scrotum Transplant Is Fully Functional Over One Year On

Posted by in category: biotech/medical

Over a year since the history-making operation, the recipient of the world’s first total penis and scrotum transplant – an injured veteran of the US Armed Forces – is “feeling whole” again and recovering well, doctors report in a case note on the pioneering procedure.

The man, who remains anonymous, was on patrol with his squad in Afghanistan when Taliban fighters ambushed them. As he went to give first aid to another soldier, he stepped on an improvised explosive device hidden on the road. In an instant, the blast took away much of the lower half of his body.

“I remember everything froze and I was upside down,” the man told MIT Technology Review. “I remember thinking a quick thought: ‘This isn’t good.’”

Sep 1, 2021

Developing Cohesive, Domestic Rare Earth Element (REE) Technologies

Posted by in categories: bioengineering, biological

Program aims to fortify supply chain by utilizing bioengineering approaches to facilitate REE separation and purification.


Rare Earth Elements (REEs) are a group of 17 similar metals that are critical material components of many DoD systems, including lasers, precision-guided weapons, magnets for motors, and other devices.1 Although the U.S. has adequate domestic REE resources, its supply chain is vulnerable due to dependence on foreign entities for separation and purification of these elements. “Biomining,” an approach that uses microbes to extract or separate target metals like gold or copper from a variety of sources is not yet useful for REEs because of poor specificity and selectivity of the microbes for REEs. The Environmental Microbes as a BioEngineering Resource (EMBER) program aims to leverage advances in microbial and biomolecular engineering to develop a scalable bio-based separation and purification strategy for REEs using under-developed domestic sources.

“The EMBER program will aim to fill a critical DoD supply chain gap” stated Dr. Linda Chrisey, EMBER program manager. “The program will target the development of bioengineered organisms/biomolecular approaches for REE purification, then translate these to practical biomining modules (e.g., biosorbent, biofiltration) that can be integrated with domestic REE sources.”

Continue reading “Developing Cohesive, Domestic Rare Earth Element (REE) Technologies” »

Sep 1, 2021

Nature’s pitfall trap: salamanders as rich prey for carnivorous plants in a nutrient‐poor northern bog ecosystem

Posted by in category: biotech/medical

Nature’s pitfall trap: salamanders as rich prey for carnivorous plants in a nutrient-poor northern bog ecosystem.

Botanical carnivory is an evolutionary marvel of the plant kingdom that has long fascinated general onlookers and naturalists alike. Darwin even dedicated serious study to these “most wonderful plants in the world” (Darwin 1,875 Ellison and Gotelli 2009). Carnivory in plants has evolved multiple times across the world, often in wet, open, and nutrient-poor environments, as an alternative pathway of nutrient acquisition (Butler et al. 2005). Among carnivorous plants, the pitcher plants (family Sarraceniaceae), and specifically the northern pitcher plant (Sarracenia purpurea purpurea L.), intrigued early natural historians (e.g., Macbride 1,815 Riley 1,874 James 1883). Sarracenia purpurea is found across eastern North America, from the Gulf Coast of Florida north to Nova Scotia and west to the Rocky Mountains (Schnell 2002), making it the subject of early and contemporary observational and experimental studies. Naturally, much research has focused on the ability of these fascinating plants to capture prey and make use of prey nutrients. The specialized bell-shaped leaves of these pitcher plants collect rainwater in which prey dies, decomposes, and breaks down because of both inquiline microorganisms (aquatic larval insects, rotifers, mites, protozoa, and bacteria) that live within the pitcher and digestive enzymes produced by the plant. These digestive actions liberate nutrients for plant growth and reproduction (Adlassnig et al. 2011).


Click on the article title to read more.

Sep 1, 2021

World-first hydrogen helicopter to certify plug-and-play H2 powerplant

Posted by in categories: energy, sustainability, transportation

The two companies have raised an initial US$6.5 million toward what could genuinely be a revolutionary powertrain for electric aircraft; a fully FAA-certified hydrogen system would instantly allow electric aircraft to carry several times more energy on board, vastly boosting flight endurance while also enabling fast refueling instead of slow charging.

HyPoint claims its “turbo air-cooled” fuel cell system” will be able to achieve up to 2,000 watts per kilogram (2.2 lb) of specific power, which is more than triple the power-to-weight ratio of traditional (liquid-cooled) hydrogen fuel cells systems. It will also boast up to 1,500 watt-hours per kilogram of energy density, enabling longer-distance journeys.” For comparison, today’s commercially available lithium battery packs rarely break the 300-Wh/kg mark.

Sep 1, 2021

Toyota reveals plan to turn trucks into emissions-free ‘power plants’

Posted by in categories: energy, transportation

Circa 2020


Carmaker is to begin testing proposal to fit its Dyna vehicles with hydrogen fuel cells[br].

Sep 1, 2021

G1/G2 Geomagnetic Storm Watch in Effect for all of Earth

Posted by in categories: computing, space

The National Weather Service’s Space Weather Prediction Center (SWPC) has issued a G1 (Minor) Geomagnetic Storm Watch for today and a G2 (Moderate) Geomagnetic Storm Watch for tomorrow.

Computer forecast models used by space weather experts suggest that a coronal mass ejection (CME) produced by region 2,680 on the Sun early on August 28 associated with an M4 flare may arrive later on September 1 creating minor geomagnetic storm conditions. According to the SWPC, activity could intensify into September 2 with the possible arrival of a second CME associated with a filament eruption that occurred later on August 28.

Should these CMEs materialize, combined effects from the two transients have the potential to result in G1-G2 storm conditions. The SWPC warns that forecast confidence is low due to the nature of these faint and somewhat ambiguous CMEs.