In the last 60 years technology has evolved at such an exponentially fast rate that we are now regularly conversing with AI based chatbots, and that same OpenAI technology has been put into a humanoid robot. It’s truly amazing to see this rapid development. Above: OpenAI technology in a humanoid robot Continued advancement […].
A loss of controlled inhibition of overly excited brain cells might explain how a common knock-out anesthesia drug works.
A new animal study led by researchers from the Massachusetts Institute of Technology (MIT) has found that propofol, a sedative used to safely lull people into unconsciousness for medical procedures, disrupts the brain’s normal ability to regain control of highly excitable neurons.
“The brain has to operate on this knife’s edge between excitability and chaos,” explains MIT neuroscientist and senior study author Earl Miller.
Researchers at California State Polytechnic University (CalPoly), Pomona are carrying out a series of quantum physics experiments expected to provide strong scientific evidence that we live in a computer simulated virtual reality.
Devised by former NASA physicist Thomas Campbell, the five experiments are variations of the double-slit and delayed-choice quantum eraser experiments, which explore the conditions under which quantum objects ‘collapse’ from a probabilistic wavefunction to a defined particle. In line with the Copenhagen Interpretation of quantum mechanics, Campbell attributes a fundamental role to measurement, but extends it to human observers. In his view, quantum mechanics shows that the physical world is a virtual reality simulation that is computed for our consciousness on demand. In essence, what you do not see does not exist.
Campbell’s quantum experiments have been designed to reveal the interactive mechanism by which nature probabilistically generates our experience of the physical world. Herein, Campbell asserts that, like a videogame, the universe is generated as needed for the player and does not exist independent of observation.
While multiple quantum experiments have pointed to the probabilistic and informational nature of reality, Campbell’s experiments are the first to investigate the connection between consciousness and simulation theory. These experiments are based on Campbell’s paper ‘On Testing the Simulation Theory’ originally published in the International Journal of Quantum Foundations in 2017.
Paradigm-shifting consequences
Importantly, Campbell’s version of the simulation hypothesis differs from the ‘ancestor simulation’ thought experiment popularized by philosopher Dr. Nick Bostrom. “Contrary to what Bostrom postulates, the idea here is that consciousness is not a product of the simulation — it is fundamental to reality,” Campbell explains. “If all five experiments work as expected, this will challenge the conventional understanding of reality and uncover profound connections between consciousness and the cosmos.” The first experiment is currently being carried out by two independent teams of researchers — One at California State Polytechnic University (Pomona) headed by Dr. Farbod Khoshnoud, and the other at a top-tier Canadian university that has chosen to participate anonymously at this time.
To learn more, or to follow their progress visit Testing the Hypothesis, a platform bringing together all relevant information about Campbell’s experiments, including a detailed explanation of each.
Campbell will be joined by Donald Hoffman, Rizwan Virk, Stephan A. Schwartz and others for the Doorway to the Future Event in Huntsville, Alabama this September.
Minimally invasive cellular-level target-specific neuromodulation is needed to decipher brain function and neural circuitry. Here nano-magnetogenetics using magnetic force actuating nanoparticles has been reported, enabling wireless and remote stimulation of targeted deep brain neurons in freely behaving animals.
“There is a tremendous amount of interest in what enables wildfire ignitions and what can be done to prevent them,” said Dr. Erica Fleishman. “This database increases the ability to access relevant information and contribute to wildfire preparedness and prevention.”
Can wildfires be predicted in advance to allow for safeguards that can prevent their spread? This is what a recent study published in Earth System Science Data hopes to address as a team of researchers have developed a database to help firefighters and power companies establish protocol for implementing strategies that holds the potential for helping to reduce the spread of a wildfire before it gets too large.
Wildfire closure sign seen in the Oregon Cascades in September 2020. (Credit: Oregon State University)
In inertial confinement fusion experiments, lasers at Lawrence Livermore National Laboratory’s National Ignition Facility focus on a tiny fuel capsule suspended inside a cylindrical x-ray oven called a hohlraum. (Photo: Jason Laurea)
SearchGPT is just a “prototype” for now. The service is powered by the GPT-4 family of models and will only be accessible to 10,000 test users at launch, OpenAI spokesperson Kayla Wood tells The Verge. Wood says that OpenAI is working with third-party partners and using direct content feeds to build its search results. The goal is to eventually integrate the search features directly into ChatGPT.
It’s the start of what could become a meaningful threat to Google, which has rushed to bake in AI features across its search engine, fearing that users will flock to competing products that offer the tools first. It also puts OpenAI in more direct competition with the startup Perplexity, which bills itself as an AI “answer” engine. Perplexity has recently come under criticism for an AI summaries feature that publishers claimed was directly ripping off their work.