Menu

Blog

Page 4030

Oct 20, 2022

3D Printing With A Drone Swarm?

Posted by in categories: 3D printing, bioengineering, drones, robotics/AI

The goal is to enable the printing of large, complex shaped structures, on any surface, using a swarm of drones, each depositing whatever material is required. It’s a bit like a swarm of wasps building a nest, into whatever little nook they come across, but on the wing.


Even in technical disciplines such as engineering, there is much we can still learn from nature. After all, the endless experimentation and trials of life give rise to some of the most elegant solutions to problems. With that in mind, a large team of researchers took inspiration from the humble (if rather annoying) wasp, specifically its nest-building skills. The idea was to explore 3D printing of structures without the constraints of a framed machine, by mounting an extruder onto a drone.

Continue reading “3D Printing With A Drone Swarm?” »

Oct 20, 2022

Ancient chemistry may explain why living things use ATP as the universal energy currency

Posted by in categories: chemistry, evolution

A simple two-carbon compound may have been a crucial player in the evolution of metabolism before the advent of cells, according to a new study published October 4 in the open access journal PLOS Biology, by Nick Lane and colleagues of University College London, U.K. The finding potentially sheds light on the earliest stages of prebiotic biochemistry, and suggests how ATP came to be the universal energy carrier of all cellular life today.

ATP, , is used by all cells as an intermediate. During , energy is captured when a is added to ADP (adenosine diphosphate) to generate ATP; cleavage of that phosphate releases energy to power most types of cellular functions. But building ATP’s complex chemical structure from scratch is energy intensive and requires six separate ATP-driven steps; while convincing models do allow for prebiotic formation of the ATP skeleton without energy from already-formed ATP, they also suggest ATP was likely quite scarce, and that some other compound may have played a central role in conversion of ADP to ADP at this stage of evolution.

The most likely candidate, Lane and colleagues believed, was the two-carbon compound acetyl phosphate (AcP), which functions today in both bacteria and archaea as a metabolic intermediate. AcP has been shown to phosphorylate ADP to ATP in water in the presence of iron ions, but a host of questions remained after that demonstration, including whether other might work as well, whether AcP is specific for ADP or instead could function just as well with diphosphates of other nucleosides (such as guanosine or cytosine), and whether iron is unique in its ability to catalyze ADP phosphorylation in water.

Oct 20, 2022

Watch Google’s Ping-Pong robot pull off a 340-hit rally

Posted by in categories: robotics/AI, virtual reality

As if it weren’t enough to have AI tanning humanity’s hide (figuratively for now) at every board game in existence, Google AI has got one working to destroy us all at Ping-Pong as well. For now they emphasize it is “cooperative,” but at the rate these things improve, it will be taking on pros in no time.

The project, called i-Sim2Real, isn’t just about Ping-Pong but rather about building a robotic system that can work with and around fast-paced and relatively unpredictable human behavior. Ping-Pong, AKA table tennis, has the advantage of being pretty tightly constrained (as opposed to playing basketball or cricket) and a balance of complexity and simplicity.

Continue reading “Watch Google’s Ping-Pong robot pull off a 340-hit rally” »

Oct 20, 2022

GNTO launches ‘Feel Good’ campaign for sustainable travel

Posted by in category: sustainability

With a focus on sustainability, Germany, one of the most sought-out European destinations with a diverse offering, has launched its Autumn/Winter campaign, encouraging travellers to visit, explore, and experience its sustainable and diverse culture. From unspoilt landscapes to authentic cuisine, urban attractions to historical locales, Germany is the ultimate European destination to travel sustainably.

The Feel Good campaign encompasses a plethora of guiding tips highlighting the country’s eco initiatives providing conscious travellers with adequate tools and information on reducing their carbon footprint while touring different regions.

According to a press statement, with the German Environment Agency having set the goal to reduce greenhouse gas emissions by 65 pc by 2030, and complete neutrality by 2045, the German National Tourism Board is consistently supporting this goal through various ongoing initiatives with one of them being the Feel Good campaign.

Oct 20, 2022

SBOMs: An Overhyped Concept That Won’t Secure Your Software Supply Chain

Posted by in categories: biotech/medical, computing, security

With Executive Order 14028, a large regulatory push toward mandating the production of a software bill of materials (SBOM) began. As this new buzzword spreads, you’d think it was a miracle cure for securing the software supply chain. Conceptually, it makes sense — knowing what is in a product is a reasonable expectation. However, it is important to understand what exactly an SBOM is and whether or not it can objectively be useful as a security tool.

SBOMs are meant to be something like a nutrition label on the back of a grocery store item listing all of the ingredients that went into making the product. While there currently is no official SBOM standard, a few guideline formats have emerged as top candidates. By far, the most popular is the Software Data Package Exchange (SPDX), sponsored by the Linux Foundation.

SPDX, as with most other formats, attempts to provide a common way to represent basic information about the ingredients that go into the production of software: names, versions, hashes, ecosystems, ancillary data like known flaws and license information, and relevant external assets. However, software is not as simple as a box of cereal, and there is no equivalent to the Food and Drug Administration enforcing compliance to any recommended guidelines.

Oct 20, 2022

Association between work characteristics and epigenetic age acceleration: cross-sectional results from UK — Understanding Society study

Posted by in categories: employment, genetics, life extension

Occupation-related stress and work characteristics are possible determinants of social inequalities in epigenetic aging but have been little investigated. Here, we investigate the association of several work characteristics with epigenetic age acceleration (AA) biomarkers.

The study population included employed and unemployed men and women (n = 631) from the UK Understanding Society study. We evaluated the association of employment and work characteristics related to job type, job stability; job schedule; autonomy and influence at work; occupational physical activity; and feelings regarding the job with four epigenetic age acceleration biomarkers (Hannum, Horvath, PhenoAge, GrimAge) and pace of aging (DunedinPoAm, DunedinPACE).

We fitted linear regression models, unadjusted and adjusted for established risk factors, and found the following associations for unemployment (years of acceleration): HorvathAA (1.51, 95% CI 0.08, 2.95), GrimAgeAA (1.53, 95% CI 0.16, 2.90) and 3.21 years for PhenoAA (95% CI 0.89, 5.33). Job insecurity increased PhenoAA (1.83, 95% CI 0.003, 3.67), while working at night was associated with an increase of 2.12 years in GrimAgeAA (95% CI 0.69, 3.55). We found effects of unemployment to be stronger in men and effects of night shift work to be stronger in women.

Oct 20, 2022

The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes

Posted by in categories: biotech/medical, chemistry, computing, economics

The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D.

Keywords: type 2 diabetes, dandelion, chlorogenic acid, chicory acid, taraxasterol, sesquiterpene.

Abbreviations: ADP — adenosine diphosphate; AFLD — alcoholic fatty liver disease; AMPK — adenosine monophosphate-activated protein kinase; ATP — adenosine triphosphate; cAMP — cyclic adenosine monophosphate; CGA — chlorogenic acid; CoA — coenzyme A; CRA — chicory acid; DAG — diacylglycerol; DBD — DNA-binding domain; DNA — deoxyribonucleic acid; DPPH — 2,2-diphenyl-1-picrylhydrazyl; Dw — dry weight; FOS — fructose oligosaccharide; G6P — glucose-6-phosphate; GDP — guanosine 5’-diphosphate; GLP-1 — glucagon-like peptide 1; GLUT2 — glucose transporter 2; GLUT4 — muscle glucose transporter protein 4; GPCR — G protein-coupled receptor; GTP — guanosine triphosphate; HNB — 2-hydroxy-5-nitrobenzenaledehyde; HPLC — high-pressure liquid chromatography; IC50 — half maximal inhibitory concentration; IDF — International Diabetes Federation; IDX-1 — islet duodenum homeobox 1; IL-1α — interleukin 1 alpha; INS-1E — rat insulinoma clonal beta-cell line; IR — insulin receptor; IRS-1 — insulin receptor substrate 1; Km — Michaelis constant; IP3 — inositol triphosphate; IRS-1 — insulin receptor substrate 1; LBD — ligand-binding domain; LC-DAD — liquid chromatography with (photo) diode array detection; LPS — lipopolysaccharide; MAPK — mitogen-activated protein kinase; NADH — nicotinamide adenine dinucleotide; NAFLD — non-alcoholic fatty liver disease; NF-κb — nuclear factor kappa B; NO — nitric oxide; PI3K — phosphatidylinositol 3 kinase; PKA — protein kinase A; PKC — protein kinase C; PPAR-γ — peroxisome proliferator-activated receptor gamma; ROS — reactive oxygen species; RxR — retinoid X receptor; SEL — sesquiterpene lactones; SUR1 — sulphonylurea receptor 1; T2D — type 2 diabetes; TAG — triacylglycerol; TNF-α — tumor necrosis factor; TO — Taraxacum officinale; TS — taraxasterol; UPLC-MS/MS — ultra-performance liquid chromatography — tandem mass spectrometry; UV/VIS — ultraviolet visible; WHO — World Health Organization.

Oct 20, 2022

New Method Converts Fish Waste Into Valuable Nanomaterial in Seconds

Posted by in categories: biotech/medical, business, chemistry, computing, nanotechnology

This could enable for microgrids for sewage disposal and more lucrative businesses in waste reclaiming through making essentially computers with waste.


A synthesis procedure developed by NITech scientists can convert fish scales obtained from fish waste into a useful carbon-based nanomaterial. Their approach uses microwaves to break the scales down thermally via pyrolysis in less than 10 seconds, yielding carbon nano-onions with unprecedented quality compared with those obtained from conventional methods. Credit: Takashi Shirai from NITech, Japan.

Continue reading “New Method Converts Fish Waste Into Valuable Nanomaterial in Seconds” »

Oct 20, 2022

Hurricane Resistant Homes

Posted by in categories: climatology, engineering, habitats, sustainability

Deltec Homes is changing the way the world builds. For over five decades, we have designed and engineered homes to fight climate change and withstand the harshest of weather conditions. The connections, both inside and out, that our homes provide make it truly the strongest home for people and our planet.

The engineering and innovation behind each Deltec is why they have stood against some of the most detrimental storms in history including direct hits from Hurricanes Dorian, Michael, Maria, Irma, Harvey, Sandy, Katrina, Hugo, Ivan and Charley.

Continue reading “Hurricane Resistant Homes” »

Oct 20, 2022

Galaxy Quantum 3 is based on this Galaxy M series phone

Posted by in categories: mobile phones, quantum physics

Samsung will soon launch another Galaxy Quantum smartphone in its home country. While previous Galaxy Quantum series phones were based on Galaxy A series devices, Samsung has changed that trend this time.

The Galaxy Quantum 3 has been revealed in South Korea, and it’s coming soon to SK Telecom’s network. The smartphone will be available for pre-order from April 22 to April 25, 2022. The first 10,000 buyers of the phone will get a Google Play gift card. Neither Samsung nor SK Telecom has revealed the price tag of the upcoming device.

The smartphone is based on the Galaxy M53 5G, which was silently revealed in Europe a few days ago. The Galaxy Quantum 3 features a 6.7-inch Super AMOLED Infinity-O display with Full HD+ resolution and a 120Hz refresh rate. It features a 108MP primary rear camera, an 8MP ultrawide camera, a 2MP macro camera, a 2MP depth sensor, and a 32MP front-facing camera. It can record 4K 30fps videos using both front and rear cameras.