Menu

Blog

Page 3938

Jan 18, 2023

A new privilege escalation vulnerability in the Linux kernel, enables a local attacker to execute malware on vulnerable systems

Posted by in category: cybercrime/malcode

A new privilege escalation vulnerability has been identified in the Linux kernel by researcher Davide Ornaghi. This vulnerability might enable a local attacker to execute code on vulnerable computers with elevated rights if the kernel is installed on those systems. Additionally, Davide published the proof-of-concept and the write-up. The vulnerability, which has been assigned the tracking number CVE-2023–0179, is a stack-based buffer overflow that exists in the Netfilter subsystem. An authorized attacker might exploit this issue to get elevated privileges as root if the attacker executed a program that had been carefully written for the purpose.

The Linux kernel has a framework known as netfilter that enables a variety of networking-related actions to be performed in the form of individualized handlers. This may be accomplished by filtering incoming network packets. Netfilter provides the functionality necessary for directing packets through a network and preventing packets from reaching sensitive locations within a network by offering a variety of functions and operations for packet filtering, network address translation, and port translation. [1] These features allow Netfilter to provide the functionality required for directing packets through a network.

Continue reading “A new privilege escalation vulnerability in the Linux kernel, enables a local attacker to execute malware on vulnerable systems” »

Jan 18, 2023

M6A methylated long noncoding RNA regulates proinflammatory response emerging as novel target for IBD

Posted by in category: biotech/medical

Cytokine mediated sustained inflammation increases the risk to develop different complex chronic inflammatory diseases, such as inflammatory bowel disease (IBD). Recent studies highlighted the involvement of inflammation associated gene variants in m6A methylation. Moreover, long noncoding RNAs (lncRNAs) participate in the pathogenesis of inflammatory disorders and their function can be influenced by differential methylation. Here we describe the functional implication of LOC339803 lncRNA in the development of IBD. We found that allele-specific m6A methylation affects YTHDC1 mediated protein binding affinity. LOC339803-YTHDC1 interaction dictates chromatin localization of LOC339803 ultimately inducing IL1B and contributing to the development of intestinal inflammation. Our findings were confirmed using human intestinal biopsy samples from IBD and controls. Overall, our results support LOC339803 lncRNA as an important mediator of intestinal inflammation, presenting this lncRNA as a potential novel therapeutic target for the treatment of IBD.

The authors have declared no competing interest.

Jan 18, 2023

Conditional, tissue-specific CRISPR/Cas9 vector system in zebrafish reveal the role of neuropilin-1b in heart regeneration

Posted by in categories: biotech/medical, genetics

CRISPR/Cas9 technology-mediated genome editing has significantly improved the targeted inactivation of genes in vitro and in vivo in many organisms. In this study, we have reported a novel CRISPR-based vector system for conditional tissue-specific gene ablation in zebrafish. Specifically, the cardiac-specific cardiac myosins light chain 2 (cmlc2) promoter drives Cas9 expression to silence the neuropilin-1(nrp1) gene in cardiomyocytes in a heat-shock inducible manner. This vector system establishes a unique tool to regulate the gene knockout in both the developmental and adult stages and hence, widens the possibility of loss-of-function studies in zebrafish at different stages of development and adulthood. Using this approach, we investigated the role of neuropilin isoforms nrp1a and nrp1b in response to cardiac injury and regeneration in adult zebrafish hearts. We observed that both the isoforms (nrp1a and nrp1b) are upregulated after the cryoinjury. Interestingly, the nrp1b-knockout significantly altered heart regeneration and impaired cardiac function in the adult zebrafish, demonstrated by reduced heart rate (ECG), ejection fractions, and fractional shortening. In addition, we show that the knockdown of nrp1b but not nrp1a induces activation of the cardiac remodeling genes in response to cryoinjury. To our knowledge, this is the first study where we have reported a heat shock-mediated conditional knockdown of nrp1a and nrp1b isoforms using CRISPR/Cas9 technology in the cardiomyocyte in zebrafish, and furthermore have identified a crucial role for nrp1b isoform in zebrafish cardiac remodeling and eventually heart function in response to injury.

The authors have declared no competing interest.

Jan 18, 2023

Study shows cyclic breathing technique more effective in reducing stress than mindfulness meditation

Posted by in categories: biotech/medical, health

At team of researchers at Stanford University reports evidence that people who engage in cyclic sighing breathing exercises see a greater reduction in stress than those engaging in mindfulness meditation. In their paper published in the journal Cell Reports Medicine, the researchers describe their study of several different types of stress reduction techniques.

Prior research has shown that while stress can be a at times, such as when it prompts people to do things they know they need to do, more often, it is considered adverse because it can lead to such as hypertension. Thus, stress techniques have been developed to help people reduce stress without resorting to drugs. One such technique is mindfulness meditation, during which a person attempts to relax by putting themselves in the moment in a nonjudgmental way for a period of time. Other techniques involve engaging in . In this new effort, the researchers compared three types of breathing exercises and mindfulness meditation to assess their effectiveness.

The three types of breathing exercises tested included cyclic sighing, in which more time and thought is spent on exhaling than on inhaling or holding the breath; box breathing, in which breathing and holding are done for the same amount of time; and cyclic hyperventilation, in which inhalations last longer than exhalations.

Jan 18, 2023

Researchers develop an artificial neuron closely mimicking the characteristics of a biological neuron

Posted by in categories: biological, chemistry, robotics/AI

In a recent article published in Nature Materials, researchers reported a conductance-based organic electrochemical neuron (c-OECN) that mimicked biological signaling in neurons, especially activation/inactivation of their sodium and potassium channels.

Compilation of the top interviews, articles, and news in the last year.

Jan 18, 2023

What Is Our Universe Expanding Into?

Posted by in categories: computing, cosmology, mapping

One question for Paul Sutter, author of “The Remarkable Emptiness of Existence,” an article in Nautilus this month. Sutter is a theoretical cosmologist at the Institute for Advanced Computational Science at Stony Brook University, where he studies cosmic voids, maps the leftover light from the big bang, and develops new techniques for finding the first stars to appear in the cosmos.

What is our universe expanding into?

That’s a great question. The answer, though, is that it’s not a great question. It’s a little tricky, so let me walk you through it. Yes, our universe is expanding. Our universe has no center and no edge. The Big Bang didn’t happen in one location in space. The Big Bang happened everywhere in the cosmos simultaneously. The Big Bang was not a point in space. It was a point in time. It exists in all of our paths.

Jan 18, 2023

The JWST is already upending our understanding of the early universe

Posted by in category: space

The telescope has already found more early galaxies than expected.

Jan 18, 2023

Record-Breaking Signal From Distant Galaxy Is Furthest of Its Kind Ever Detected

Posted by in category: space

Hydrogen is a key building block of the cosmos. Whether stripped down to its charged core, or piled into a molecule, the nature of its presence can tell you a lot about the Universe’s features on the largest of scales.

For that reason astronomers are very interested in detecting signals from this element, wherever it can be found.

Now the light signature of uncharged, atomic hydrogen has been measured further from Earth than ever before, by some margin. The Giant Metrewave Radio Telescope (GMRT) in India has picked up a signal with a lookback time – the time between the light being emitted and being detected – of a huge 8.8 billion years.

Jan 18, 2023

Researchers produce first-ever toolkit for RNA sequencing analysis using a ‘pantranscriptome’

Posted by in categories: biotech/medical, genetics

Analyzing a person’s gene expression requires mapping their RNA landscape to a standard reference to gain insight into the degree to which genes are “turned on” and perform functions in the body. But researchers can run into issues when the reference does not provide enough information to allow for accurate mapping, an issue known as reference bias.

In a new paper published in the journal Nature Methods, researchers at UC Santa Cruz introduce the first-ever method for analyzing RNA sequencing data genome-wide using a “pantranscriptome,” which combines a transcriptome and a pangenome—a reference that contains from a cohort of diverse individuals, rather than just a single linear strand.

A group of scientists led by UCSC Associate Professor of Biomolecular Engineering Benedict Paten have released a toolkit that allows researchers to map an individual’s RNA data to a much richer reference, addressing reference bias and leading to much more accurate mapping.

Jan 18, 2023

Scientists discover potential new method to treat superbug infections

Posted by in categories: biotech/medical, chemistry, health

Scientists at University of Galway delved into the issue of antimicrobial resistance—one of the greatest threats to human health—discovering the potential to improve treatment options for superbug MRSA infections using penicillin-type antibiotics that have become ineffective on their own.

The research has been published in the journal mBio.

Professor James P O’Gara and Dr. Merve S Zeden in the School of Biological and Chemical Sciences, University of Galway, led the study.