Menu

Blog

Page 3630

Jul 21, 2022

Have researchers found the best semiconductor of them all?

Posted by in categories: computing, solar power, sustainability

Silicon is one of the most abundant elements on Earth, and in its pure form the material has become the foundation of much of modern technology, from solar cells to computer chips. But silicon’s properties as a semiconductor are far from ideal.

For one thing, although silicon lets electrons whizz through its structure easily, it is much less accommodating to “holes”—electrons’ positively charged counterparts—and harnessing both is important for some kinds of chips. What’s more, silicon is not very good at conducting heat, which is why overheating issues and expensive cooling systems are common in computers.

Now, a team of researchers at MIT, the University of Houston, and other institutions has carried out experiments showing that a material known as cubic arsenide overcomes both of these limitations. It provides to both electrons and holes, and has excellent thermal conductivity. It is, the researchers say, the best semiconductor material ever found, and maybe the best possible one.

Jul 21, 2022

When Light and Electrons Spin Together: Advancing Toward Petahertz Electronics Based on Quantum Materials

Posted by in categories: particle physics, quantum physics

Theoretical physicists at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) have demonstrated how the coupling between intense lasers, the motion of electrons, and their spin influences the emission of light on the ultrafast timescale.

Electrons, which are present in all kinds of matter, are charged particles and therefore react to the application of light. When an intense light field hits a solid, electrons experience a force, called the Lorentz force, that drives them and induces some exquisite dynamics reflecting the properties of the material. This, in turn, results in the emission of light by the electrons at various wavelengths, a well-known phenomenon called high-harmonic generation.

Exactly how the electrons move under the influence of the light field depends on a complex mixture of properties of the solid, including its symmetries, topology, and band structure, as well as the nature of the light pulse. Additionally, electrons are like spinning tops. They have a propensity to rotate either clockwise or counter-clockwise, a property called the “spin” of the electrons in quantum mechanics.

Jul 21, 2022

Micrometeoroid Damage To James Webb Telescope Can’t Be Fixed

Posted by in category: space

The widely celebrated James Webb Space Telescope has received damage to one of its mirrors from a micrometeoroid, but NASA says not to worry. — Videos from The Weather Channel | weather.com

Jul 21, 2022

Biologists train AI to generate medicines and vaccines

Posted by in categories: biotech/medical, robotics/AI

Scientists have developed artificial intelligence software that can create proteins that may be useful as vaccines, cancer treatments, or even tools for pulling carbon pollution out of the air.

This research, reported today in the journal Science, was led by the University of Washington School of Medicine and Harvard University. The article is titled “Scaffolding functional sites using deep learning.”

“The proteins we find in nature are amazing molecules, but designed proteins can do so much more,” said senior author David Baker, an HHMI Investigator and professor of biochemistry at UW Medicine. “In this work, we show that machine learning can be used to design proteins with a wide variety of functions.”

Jul 21, 2022

Scientists Have Created Genetically Modified Drought-Resistant Plants

Posted by in categories: biological, chemistry, genetics

Proteins serve a variety of purposes in plants in addition to being the fundamental building blocks of life. More than 20 billion protein molecules make up a typical plant cell, helping to stabilize its structure and sustain cellular metabolism.

Researchers at Heidelberg University’s Centre for Organismal Studies have shed light on a biological process that increases the life of plant proteins. They have now discovered a crucial protein, called N-terminal acetylation, that controls this mechanism. The study’s findings were published in the journals Molecular Plant and Science Advances.

N-terminal acetylation is a chemical marker that develops during the production of proteins. Plants do this by affixing an acetic acid.

Jul 21, 2022

Mushrooms could solve a huge problem in outer space

Posted by in categories: materials, satellites

Circa 2021


Mycelium is very light in weight, it naturally floats on water, it can withstand the cold of space where we don’t have to worry about cold welding, and we can add in fine strains of metal material which is used to transmit almost any type of signal. As you can see, there are numerous reasons why mycelium is quite suitable for our satellites in space, on land, and in the air on its way to space.

Continue reading “Mushrooms could solve a huge problem in outer space” »

Jul 21, 2022

The Coming RISC-V Revolution

Posted by in categories: quantum physics, robotics/AI

Simpler, faster, smaller, and cheaper chips are a key to low-power computing — even in AI.


RISC-V is taking off like a rocket.
In this video I discuss how RISC-V will reshape chip design industry.
#RISCV

Continue reading “The Coming RISC-V Revolution” »

Jul 21, 2022

Commentary: CHIPS Act is too little, too late to save U.S. chip manufacturing

Posted by in category: computing

The U.S. should invest in its allies, instead of chasing the mirage of onshore chip manufacturing.

Jul 21, 2022

SpaceX’s first Starlink V2 satellites spotted at Starbase

Posted by in categories: Elon Musk, internet, satellites

On Monday, SpaceX was spotted loading some of the first Starlink V2 satellite prototypes into a custom mechanism designed to refill Starship’s magazine-like payload bay.

While it’s not the first time SpaceX has used the dispenser, the photos captured by photographer Kevin Randolph are the first to clearly show real prototypes of the next generation of Starlink satellites. According to CEO Elon Musk, those Starlink Gen2 or V2 satellites will be “at least 5 times better”, “an order of magnitude more capable,” and about four times heavier than current (V1.5) Starlink satellites.

The potential of the new satellite bus design paired with Starship’s massive fairing and lift capacity could dramatically improve the viability and cost-effectiveness of SpaceX’s Starlink constellation. First, though, the company needs to launch and qualify prototypes of the new satellite design and verify that all associated ground support equipment works as expected.

Jul 21, 2022

Robot Dog Not So Cute With Submachine Gun Strapped to Its Back

Posted by in category: robotics/AI

https://youtube.com/watch?v=5VygwTBgph4