Menu

Blog

Page 31

Jul 8, 2024

A new approach to realize quantum mechanical squeezing

Posted by in categories: computing, quantum physics, space

Mechanical systems are highly suitable for realizing applications such as quantum information processing, quantum sensing and bosonic quantum simulation. The effective use of these systems for these applications, however, relies on the ability to manipulate them in unique ways, specifically by ‘squeezing’ their states and introducing nonlinear effects in the quantum regime.

A research team at ETH Zurich led by Dr. Matteo Fadel recently introduced a new approach to realize quantum squeezing in a nonlinear mechanical oscillator. This approach, outlined in a paper published in Nature Physics, could have interesting implications for the development of quantum metrology and sensing technologies.

“Initially, our goal was to prepare a mechanical squeezed state, namely a quantum state of motion with reduced quantum fluctuations along one phase-space direction,” Fadel told Phys.org. “Such states are important for and quantum simulation applications. They are one of the in the universal gate set for quantum computing with continuous-variable systems—meaning mechanical degrees of freedom, , etc., as opposed to qubits that are discrete-variable systems.”

Jul 8, 2024

Researchers Develop World’s First Anode-Free Sodium Solid-State Battery

Posted by in categories: chemistry, engineering, sustainability, transportation

UChicago Pritzker Molecular Engineering Prof. Y. Shirley Meng’s Laboratory for Energy Storage and Conversion has created the world’s first anode-free sodium solid-state battery.

With this research, the LESC – a collaboration between the UChicago Pritzker School of Molecular Engineering and the University of California San Diego’s Aiiso Yufeng Li Family Department of Chemical and Nano Engineering – has brought the reality of inexpensive, fast-charging, high-capacity batteries for electric vehicles and grid storage closer than ever.

“Although there have been previous sodium, solid-state, and anode-free batteries, no one has been able to successfully combine these three ideas until now,” said UC San Diego PhD candidate Grayson Deysher, first author of a new paper outlining the team’s work.

Jul 8, 2024

AMD Says an AI Cluster With 1.2 Million GPUs Could Be In the Cards

Posted by in categories: robotics/AI, supercomputing

If it ever gets built, it will dwarf all existing supercomputers.

Jul 8, 2024

Copper Nanoclusters Convert CO2 Into Useful Methane

Posted by in category: sustainability

Researchers have designed a copper nanocluster-based catalyst that converts carbon dioxide into useful methane.

Jul 8, 2024

2D quantum cooling system reaches temperatures colder than outer space by converting heat into electrical voltage

Posted by in categories: quantum physics, space

This 2D cooling system can deliver 100mK temperatures.

Jul 8, 2024

New material paves the way to on-chip energy harvesting

Posted by in categories: chemistry, computing

Researchers from Germany, Italy, and the UK have achieved a major advance in the development of materials suitable for on-chip energy harvesting. By composing an alloy made of silicon, germanium and tin, they were able to create a thermoelectric material, promising to transform the waste heat of computer processors back into electricity.

With all elements coming from the 4th main group of the periodic table, these new semiconductor alloy can be easily integrated into the CMOS process of chip production. The research findings are published in ACS Applied Energy Materials.

The increasing use of electronic devices in all aspects of our lives is driving up energy consumption. Most of this energy is dissipated into the environment in the form of heat.

Jul 8, 2024

Google claims new AI training tech is 13 times faster and 10 times more power efficient — DeepMind’s new JEST optimizes training data for impressive gains

Posted by in category: robotics/AI

Potentially great news for a power grid in fear of AI over-demand.

Jul 8, 2024

Alzheimer’s-related synapse damage reversed by synthetic protein

Posted by in categories: biotech/medical, life extension, neuroscience

Researchers at the Okinawa Institute of Science and Technology (OIST) have developed a potentially transformative approach to treating Alzheimer’s disease, A team from the former Cellular and Molecular Synaptic Function Unit have reported significant progress in reversing cognitive decline and restoring memory in transgenic mice using a synthetic protein. The findings, published in Brain Research, offer hope for a viable treatment to alleviate the debilitating symptoms associated with this neurodegenerative condition.

“We successfully reversed the symptoms of Alzheimer’s disease in mice,” explained Dr Chia-Jung Chang, first author of the study and presently a member of the Neural Computation Unit at OIST. “We achieved this with a small, synthetic peptide, PHDP5, that can easily cross the blood-brain barrier to directly target the memory center in the brain [1].”

Longevity. Technology: There is a pressing need to find effective treatments for Alzheimer’s; along with other forms of dementia, this debilitating disease currently affects approximately 55 million people worldwide, and this number is predicted to nearly double every 20 years, reaching 78 million in 2030 and 139 million in 2050. As well as a health burden, Alzheimer’s is an economic burden – the annual global cost of dementia has now rocketed to more than US$1.3 trillion, with a projected rise to US$2.8 trillion by 2030 on the horizon [2].

Jul 8, 2024

High-tech ‘whiskers’ give working robots more ability to move safely

Posted by in category: robotics/AI

Taking inspiration from the animal kingdom, Flinders University researchers are developing affordable, flexible and highly responsive ‘whiskers’ to attach to robots. Their article, “Optimising electromechanical whisker design for contact localisation,” has been published in the journal Sensors and Actuators A: Physical.

While lasers and camera vision is used to instruct robot movement, the additional support of light-weight, cheap and flexible whiskers would give workplace and domestic robots additional tactile abilities in confined or cluttered spaces.

Like a rat’s whiskers, these sensors can be used to overcome a robot’s range-finder or camera blind spots which may not ‘see’ or register an object close by, says Flinders College of Science and Engineering Ph.D. candidate Simon Pegoli. Additionally, whiskers uncover properties of objects, such as moveability, not possible with camera or regular range-finder sensors.

Jul 8, 2024

Would Astronauts’ Kidneys Survive a Roundtrip to Mars?

Posted by in categories: health, space

The structure and function of the kidneys is altered by space flight, with galactic radiation causing permanent damage that would jeopardise any mission to Mars, according to a new study led by researchers from UCL.

The study, published in Nature Communications, is the largest analysis of kidney health in space flight to date and includes the first health dataset for commercial astronauts. It is published as part of a Nature special collection of papers on space and health.

Researchers have known that space flight causes certain health issues since the 1970s, in the years after humans first travelled beyond Earth’s magnetic field, most famously during the first moon landing in 1969. These issues include loss of bone mass, weakening of the heart and eyesight, and development of kidney stones.

Page 31 of 11,447First2829303132333435Last