Menu

Blog

Page 3131

Mar 23, 2023

Doubling a qubit’s life, researchers prove a key theory of quantum physics

Posted by in category: quantum physics

Researchers at Yale have for the first time, using a process known as quantum error correction, substantially extended the lifetime of a quantum bit—a long-sought-after goal and one of the trickiest challenges in the field of quantum physics.

Led by Yale’s Michael Devoret, the experiment proves—decades after its were proposed—that quantum error correction works in practice. Quantum error correction is a process designed to keep quantum information intact for a period of time longer than if the same information were stored in hardware components without any correction.

The results were published March 22 in Nature.

Mar 23, 2023

This Computer Chip is alive 🤯

Posted by in categories: computing, media & arts, neuroscience

https://youtube.com/watch?v=FuzoLdrRX5Q

The technology I want to talk about today is something out of this world, but also a bit controversial There is a startup in Australia who are actually growing live human neurons and then integrating it into traditional computer chips… mind-blowing stuff!

My Gear:
Camera Sony Alpha 7 III: https://amzn.to/3dmv2O6
Lens Sony 50mm F1.8: https://amzn.to/3weJoJo.
Mic Sennheiser: https://amzn.to/3IKW5Ax.
Music from my videos: https://www.epidemicsound.com/referral/908oe4

Continue reading “This Computer Chip is alive 🤯” »

Mar 23, 2023

Lab-Grown Brain Learns Pong — Is This Biological Neural Network “Sentient”?

Posted by in categories: biological, robotics/AI

A leading neuroscientist claims that a pong-playing clump of about a million neurons is “sentient”. What does that mean? Why did they teach a lab-grown brain to play pong? To study biological self-organization at the root of life, intelligence, and consciousness. And, according to their website, “to see what happens.”

CORRECTIONS/Clarifications:
- The cells aren’t directly frozen in liquid nitrogen — they are put in vials and stored in liquid nitrogen: https://www.atcc.org/products/pcs-201-010
- The sentience of some invertebrates, like octopuses, is generally agreed upon. Prominent scientists affirmed non-human consciousness in the Cambridge Declaration on Consciousness: https://philiplow.foundation/consciousness/

Continue reading “Lab-Grown Brain Learns Pong — Is This Biological Neural Network ‘Sentient’?” »

Mar 23, 2023

This Lab-Grown Brain Made a Muscle TWITCH, Here’s How

Posted by in categories: biotech/medical, food, neuroscience, quantum physics

Growing brains can be a tricky process, but growing ones that can make muscles move? That’s an incredible feat. Here’s how scientists did it.

How Close Are We to Farming Human Body Parts? — https://youtu.be/oRHxX9OW9ow.

Continue reading “This Lab-Grown Brain Made a Muscle TWITCH, Here’s How” »

Mar 23, 2023

RNA component found in asteroid sample

Posted by in category: space

Interesting results from the Japanese Hayabusa2 spacecraft — molecules needed for life were found in samples from the asteroid Ryugu.

The mission will now continue until at least 2031.

Continue reading “RNA component found in asteroid sample” »

Mar 23, 2023

The genie escapes: Stanford copies the ChatGPT AI for less than $600

Posted by in category: robotics/AI

Stanford’s Alpaca AI performs similarly to the astonishing ChatGPT on many tasks – but it’s built on an open-source language model and cost less than US$600 to train up. It seems these godlike AIs are already frighteningly cheap and easy to replicate.

Mar 23, 2023

Exciting Discoveries of Super Habitable Planets Beyond Earth (VIDEO)

Posted by in category: space

Read more about

Mar 23, 2023

Here’s a peek into the mathematics of black holes

Posted by in categories: cosmology, information science, mathematics, physics

Just a couple of years earlier, in 1963, New Zealand mathematician Roy Kerr found a solution to Einstein’s equation for a rotating black hole. This was a “game changer for black holes,” Giorgi noted in a public lecture given at the virtual 2022 International Congress of Mathematicians. Rotating black holes were much more realistic astrophysical objects than the non-spinning black holes that Karl Schwarzschild had solved the equations for.

“Physicists really had believed for decades that the black hole region was an artifact of symmetry that was appearing in the mathematical construction of this object but not in the real world,” Giorgi said in the talk. Kerr’s solution helped establish the existence of black holes.

In a nearly 1,000-page paper, Giorgi and colleagues used a type of “proof by contradiction” to show that Kerr black holes that rotate slowly (meaning they have a small angular momentum relative to their mass) are mathematically stable. The technique entails assuming the opposite of the statement to be proved, then discovering an inconsistency. That shows that the assumption is false. The work is currently undergoing peer review. “It’s a long paper, so it’s going to take some time,” Giorgi says.

Mar 23, 2023

Breakthrough discovery in materials science challenges current understanding of photoemission

Posted by in categories: materials, science

What exactly is light—and what is it made of? It’s an age-old question that dates back to antiquity, and one of the most important investigations undertaken by scientists looking to understand the nature of reality.

Mar 23, 2023

Researchers detail groundbreaking Angelman syndrome development

Posted by in categories: biotech/medical, genetics, neuroscience

Researchers at Texas A&M University have developed the first molecular therapeutic for Angelman syndrome to advance into clinical development.

In a new article, published today in Science Translational Medicine, Dr. Scott Dindot, an associate professor and EDGES Fellow in the Texas A&M School of Veterinary Medicine and Biomedical Sciences’ (VMBS) Department of Veterinary Pathobiology, and his team share the process through which they developed this novel therapeutic candidate, also known as 4.4.PS.L, or GTX-102. Dindot is also the executive director of molecular genetics at Ultragenyx, which is leading the development of GTX-102.

Angelman syndrome (AS) is a devastating, rare neurogenetic disorder that affects approximately 1 in 15,000 per year; the disorder is triggered by a loss of function of the maternal UBE3A gene in the brain, causing , absent speech, movement or balance disorder, and seizures.