Menu

Blog

Page 2

Dec 13, 2024

A Twisted Path to Innovation: Vortex Electric Fields in 2D Materials Advance Electronics and Quantum Devices

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

In the world of science, even a small twist may carry immense implications for materials. Researchers at City University of Hong Kong have uncovered how a subtle rotation in 2D layers can give rise to a vortex electric field. This finding, published in Science, has the potential to impact electronic, magnetic, and optical devices as well as new applications in quantum computing, spintronics, and nanotechnology. According to Professor Ly Thuc Hue of CityUHK’s Department of Chemistry, the study demonstrates how “a simple twist in bilayer 2D materials” can induce this electric field, bypassing the need for costly thin-film deposition techniques.

Akin to solving intricate technical puzzles, researchers had to ensure clean, precisely aligned layers of material—a notoriously difficult challenge in the world of 2D materials. Twisted bilayers are made by stacking two thin layers of a material at a slight angle, creating unique electronic properties.

However, traditional methods of synthesizing these bilayers often limit the range of twist angles, particularly at smaller degrees, making exploration of their full potential nearly impossible. To address this, the team at City University of Hong Kong developed an ice-assisted transfer technique that uses a thin sheet of ice to align and transfer bilayers with precision.

Dec 13, 2024

Humans Are Still Dreaming of Clean Energy. Carbon Nanotubes May Be the Turning Point

Posted by in categories: energy, nanotechnology

They could store 15,000 times more energy than steel springs and three times more energy than lithium.

Dec 13, 2024

FunMap reveals a functional network of genes and proteins in human cancer

Posted by in categories: biotech/medical, genetics, robotics/AI

Large-scale protein and gene profiling have massively expanded the landscape of cancer-associated proteins and gene mutations, but it has been difficult to discern whether they play an active role in the disease or are innocent bystanders. In a study published in Nature Cancer, researchers at Baylor College of Medicine revealed a powerful and unbiased machine learning-based approach called FunMap for assessing the role of cancer-associated mutations and understudied proteins, with broad implications for advancing cancer biology and informing therapeutic strategies.

“Gaining functional information on the genes and proteins associated with cancer is an important step toward better understanding the disease and identifying potential therapeutic targets,” said corresponding author Dr. Bing Zhang, professor of molecular and human genetics and part of the Lester and Sue Smith Breast Center at Baylor.

“Our approach to gain functional insights into these genes and proteins involved using machine learning to develop a network mapping their functional relationships,” said Zhang, member of Baylor’s Dan L Duncan Comprehensive Cancer Center and a McNair Scholar. “It’s like, I may not know anything about you, but if I know your LinkedIn connections, I can infer what you do.”

Dec 13, 2024

Group wants to launch a telescope to study black holes from space

Posted by in category: cosmology

Black holes are some of the most extreme objects in the universe, and a new mission proposal suggests launching a space telescope specifically to study them. The Event Horizon Telescope (EHT) group, which took both the first-ever image of a black hole in 2019 and the first-ever image of the supermassive black hole at the center of our galaxy in 2022, has plans for a new mission called the Black Hole Explorer (BHEX).

The idea of BHEX is to use a space-based telescope to collect even more detailed information from black holes, as there is less interference from water vapor when viewing them from above the Earth’s atmosphere. The aim would be to combine data from this telescope with the many telescopes on the ground that are already used in the EHT project. The next phase of the project is a collaboration between the Center for Astrophysics | Harvard & Smithsonian (CfA) and the National Radio Astronomy Observatory (NRAO).

Dec 13, 2024

Rewriting Evolution: Study Shows Neanderthals and Humans Were Not the Same Species

Posted by in categories: education, evolution, genetics

A study suggests that by the time H. sapiens expanded, the differentiation between the two species had progressed to the extent that they were distinct and recognizable as separate species.

A recent study conducted by researchers from London’s Natural History Museum and the Institute of Philosophy at KU Leuven has strengthened the argument that Neanderthals and modern humans (Homo sapiens) should be classified as distinct species to more accurately trace our evolutionary history.

Different researchers have different definitions as to what classifies as a species. It is undisputed that H. sapiens and Neanderthals originate from the same parental species, however studies into Neanderthal genetics and evolution have reignited the debate over whether they should be classed as separate from H. sapiens or rather a subspecies (H. sapiens neanderthalensis).

Dec 13, 2024

Scientists achieve nuclear spin coherence in levitating microparticles

Posted by in categories: biological, computing, quantum physics

A new study in Physical Review Letters demonstrates the levitation of a microparticle using nuclear magnetic resonance (NMR), having potential implications from biology to quantum computing.

NMR is a spectroscopic technique commonly used to analyze various materials based on how the respond to external magnetic fields. This provides information about the internal structure, dynamics, and environment of the material.

One of the main challenges with NMR is using it on small objects to control the quantum properties of levitating microparticles.

Dec 13, 2024

A major breakthrough in brain implants

Posted by in categories: biotech/medical, computing, neuroscience

And it’s not from Neuralink.

Recently, Semafor received an extraordinary iMessage. It was from Rodney Gorham, a paralyzed ALS patient, and he had sent it directly from his brain. Gorham has a brain implant called Stentrode. Unlike previous generations of brain-computer interfaces, the Stentrode, from the neurotechnology company Synchron, can be implanted without invasive brain surgery. But… what *are* brain-computer interfaces? How do they work? And where is this novel technology going?

Dec 13, 2024

Identification of the Potential Molecular Mechanisms Linking RUNX1 Activity with Nonalcoholic Fatty Liver Disease, by Means of Systems Biology

Posted by in categories: biotech/medical, mathematics

📝 — Bertran, et al.

Full text is available 👇


Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease; nevertheless, no definitive diagnostic method exists yet, apart from invasive liver biopsy, and nor is there a specific approved treatment. Runt-related transcription factor 1 (RUNX1) plays a major role in angiogenesis and inflammation; however, its link with NAFLD is unclear as controversial results have been reported. Thus, the objective of this work was to determine the proteins involved in the molecular mechanisms between RUNX1 and NAFLD, by means of systems biology. First, a mathematical model that simulates NAFLD pathophysiology was generated by analyzing Anaxomics databases and reviewing available scientific literature.

Dec 13, 2024

New Insights into Brain Mechanisms Underlying Empathy

Posted by in categories: genetics, neuroscience

A specific brain mechanism modulates how animals respond empathetically to others’ emotions. This is the latest finding from the research unit Genetics of Cognition, led by Francesco Papaleo, Principal Investigator at the Istituto Italiano di Tecnologia (IIT – Italian Institute of Technology) and affiliated with IRCCS Ospedale Policlinico San Martino in Genova. The study, recently published in Nature Neuroscience, provides new insights into psychiatric conditions where this socio-cognitive skill is impaired, such as post-traumatic stress disorder (PTSD), autism, and schizophrenia.

Psychological studies have shown that the way humans respond to others’ emotions is strongly influenced by their own past emotional experiences. When a similar emotional situation—such as a past stressful event—is observed in another person, we can react in two different ways. On one hand, it may generate empathy, enhancing the ability to understand others’ problems and increasing sensitivity to others altered emotions. On the other hand, it may induce self-distress resulting into an avoidance towards others.

The research group at IIT has demonstrated that a similar phenomenon also occurs in animals: recalling a negative experience strongly influences how an individual responds to another who is experiencing that same altered emotional state. More specifically, animals exhibit different reactions only if the negative event they experienced in the past is identical to the one they observe in others. This indicates that even animals can specifically recognize an emotional state and react accordingly even without directly seeing the triggering stimuli.

Dec 13, 2024

New technique doubles the usual depth limit of metabolic imaging

Posted by in category: futurism

Page 2 of 12,17612345678Last