Menu

Blog

Page 2926

Dec 2, 2022

Scientists Have Just Successfully Recreated A Dinosaur From Chicken DNA!

Posted by in categories: biotech/medical, education, evolution

https://www.youtube.com/watch?v=xbY1VkNXAsE

You will not believe what we’re about to tell you — scientists have just created the very first Dino
chicken!
Using chicken DNA, they’ve proven how evolution works, and we might just see dinosaurs roam.
the Earth again. It’s our one chance to live out a real-life version of Jurassic Park!
So, join us as we learn how scientists took chicken DNA and created the chickenosaurus’

Disclaimer Fair Use:
1. The videos have no negative impact on the original works.
2. The videos we make are used for educational purposes.
3. The videos are transformative in nature.
4. We use only the audio component and tiny pieces of video footage, only if it’s necessary.

Continue reading “Scientists Have Just Successfully Recreated A Dinosaur From Chicken DNA!” »

Dec 2, 2022

Researchers discover a new function of CRISPR/Cas9 gene scissors

Posted by in categories: biotech/medical, genetics

For several years now, the CRISPR/Cas9 gene scissors have been causing a sensation in science and medicine. This new tool of molecular biology has its origins in an ancient bacterial immune system. It protects bacteria from attack by so-called phages, i. e. viruses that infect bacteria. Researchers from the Institute of Structural Biology at the University Hospital Bonn (UKB) and the Medical Faculty of the University of Bonn, in cooperation with the partner University of St Andrews in Scotland and the European Molecular Biology Laboratory in Hamburg, have now discovered a new function of the gene scissors. The study was published yesterday in the renowned scientific journal “Nature”.

Bacteria and phages have been engaged in a life-and-death struggle on Earth since time immemorial. When an attacking phage injects its genetic material into a bacterium, it is forced to produce new phages, which in turn infect more bacteria. Some bacteria have evolved the CRISPR system in response. With this bacterial immune system, the phage genetic material is recognized and destroyed.

At the same time, the resulting fragments are integrated into the genome of the bacterium. This creates a kind of library that the CRISPR immune system can access again and again and is thus armed for future attacks. In addition, it was discovered that so-called type III variants of the gene scissors produce small signal molecules. With the help of these small molecules, the bacteria switch on a complex emergency plan. This ensures that a virus can be combated optimally and on a broad front.

Dec 2, 2022

Finally! Breakthrough in Quantum Gravity with Leonard Susskind

Posted by in categories: innovation, quantum physics

https://www.youtube.com/watch?v=Q78cdRiWi3s

Professor leonard sussking on quantum gravity.

Dec 2, 2022

Prevalence of ‘meth’ heart failure now seen in a wide range of socioeconomic and racial groups

Posted by in categories: biotech/medical, economics, health

Rates of heart failure associated with the growing illicit use of the stimulant drug methamphetamine, or meth for short, are rising worldwide and now affect a wide range of socio-economic and racial groups, finds a review of the available evidence, published online in the journal Heart.

Meth heart failure is also more severe than that experienced by those who don’t use the drug, and warrants increased public awareness and availability of treatment for addiction to stem the rising tide of those affected, urge the researchers.

Previously published research shows that use of the drug, also popularly known as “crystal meth,” “ice” and “speed,” is associated with serious health problems, including high blood pressure, , stroke, and even sudden death. But there are no comprehensive systematic reviews of published research on meth use and heart failure, and this prompted a team of U.S. and Canadian researchers to try to bridge this knowledge gap.

Dec 2, 2022

Cajal Neuroscience launches with $96 million to transform neurodegeneration drug discovery

Posted by in categories: biotech/medical, computing, genetics, life extension, neuroscience

Cajal Neuroscience, a biotechnology company integrating human genetics, functional genomics and advanced microscopy to discover novel targets and therapeutics for neurodegeneration, has launched with the completion of a $96 million Series A financing.

The financing was led by The Column Group and Lux Capital, with additional participation from Two Sigma Ventures, Evotec, Bristol Myers Squibb, Alexandria Venture Investments, Dolby Family Ventures and other investors.

Longevity. Technology: Seattle-based Cajal is committed to discovering novel therapeutics for neurodegeneration; by focusing on the mechanistic, spatial and temporal complexity of neurodegeneration, the biotech’s powerful platform is designed to unlock the complexity of disease at unprecedented scale, and integrates expertise in neuroscience, neuroanatomy and computational biology with state-of-the-art technologies for high-throughput functional validation.

Dec 2, 2022

Cardio-sarcopenia: A syndrome of concern in aging

Posted by in categories: biotech/medical, life extension

Cardiac alterations in structure and function, namely, the left ventricle, have been intensely studied for decades, in association with aging. In recent times, there has been keen interest in describing myocardial changes that accompany skeletal muscle changes in older adults. Initially described as a cardio-sarcopenia syndrome where alterations in myocardial structure were observed particularly among older adults with skeletal muscle sarcopenia, investigations into this syndrome have spurred a fresh level of interest in the cardiac-skeletal muscle axis. The purpose of this perspective is to summarize the background for this “syndrome of concern,” review the body of work generated by various human aging cohorts, and to explore future directions and opportunities for understanding this syndrome.

The traditional view of cardiovascular aging is that of age-related adaptations in the heart characterized by increased left ventricular (LV) mass (LVM) and LV hypertrophy (LVH), which are often secondary to increased systolic blood pressure mainly mediated by arterial stiffening (1, 2). These changes accumulate throughout the lifetime of an individual, increasing the risk of developing cardiovascular disease (CVD), such as heart failure (HF) and coronary artery disease. The incidence of CVD increases with age, rising from ∼78% among adults aged 60–79 years to ∼90% in those aged above 80 years. CVD is the leading cause of disease burden in the world, with global prevalence doubling from 271 million to 523 million between 1990 and 2019. Incident CVD mortality increased from 12.1 million to 18.6 million in the same period , and accounted for 32% of all deaths. With rapidly aging national populations, these numbers are expected to increase.

Dec 1, 2022

Time-reversed laser absorbs nearly all light

Posted by in category: futurism

A simple design overcomes a substantial limitation on the potential applications for coherent perfect absorbers.

Dec 1, 2022

OpenAI’s new chatbot can explain code and write sitcom scripts but is still easily tricked

Posted by in category: robotics/AI

ChatGPT wants to answer your queries, even if it doesn’t know the answer.

Dec 1, 2022

Femtosecond to attosecond light pulses from a molecular modulator

Posted by in category: chemistry

Year 2011 face_with_colon_three


Ultrafast science has begun to tackle the measurement of electronic and chemical processes taking place on the few-femtosecond-to-attosecond timescale. This field requires high-power, extremely short-duration laser pulses. Here we review progress towards the generation of such pulses by Raman scattering in a medium whose component molecules oscillate in phase, which modulates the optical polarizability of the medium and generates high-order Raman sidebands on a field propagating through it. This process may occur with high efficiency and thus lead to sufficient bandwidth for supporting few-femtosecond to attosecond pulses. Significant progress has recently been made in the use of this technique to deliver useable ultrashort pulses in the visible to ultraviolet regions of the spectrum.

Dec 1, 2022

Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex

Posted by in category: neuroscience

face_with_colon_three year 2020.


Billeh et al. systematically integrate multi-modal data about neuron types, connectivity, and sensory innervations to create biologically realistic models of the mouse primary visual cortex at two levels of resolution, shared freely as a community resource.