Menu

Blog

Page 2888

Dec 9, 2022

The Clock Foundation Offers $175 Methylation Tests

Posted by in categories: biotech/medical, life extension

By Joe Bennett.

Methylation tests have proven themselves to be the world’s most accurate form of biological age tests, along with being the most accurate form of life expectancy prediction to date. Unfortunately up until very recently these tests have largely been confirmed to only be available to those in the scientific community, or those with especially deep pockets. However, this is no longer the case, as this Christmas Steve Horvath’s Clock Foundation is offering a DNA methylation age test (often referred to as a GrimAge test) for the unbelievably low price of $175. This is a remarkably low price considering that last year these tests would normally be at least $450, and were not widely available at the best of times.

Dec 9, 2022

Quantum light source could pave the way to a quantum internet

Posted by in categories: engineering, internet, quantum physics

The ability to integrate fiber-based quantum information technology into existing optical networks would be a significant step toward applications in quantum communication. To achieve this, quantum light sources must be able to emit single photons with controllable positioning and polarization and at 1.35 and 1.55 micrometer ranges where light travels at minimum loss in existing optical fiber networks, such as telecommunications networks. This combination of features has been elusive until now, despite two decades of research efforts.

Recently, two-dimensional (2D) semiconductors have emerged as a novel platform for next-generation photonics and electronics applications. Although scientists have demonstrated 2D quantum emitters operating at the visible regime, single-photon emission in the most desirable telecom bands has never been achieved in 2D systems.

To solve this problem, researchers at Los Alamos National Laboratory developed a strain engineering protocol to deterministically create two-dimensional quantum light emitters with operating wavelength tunable across O and C telecommunication bands. The polarization of the emissions can be tuned with a magnetic field by harnessing the valley degree of freedom.

Dec 9, 2022

Unexpected Kilonova Discovery: Colossal Explosion Challenges Our Understanding of Gamma-Ray Bursts

Posted by in category: space

International Gemini Observatory uncovers surprising evidence of colliding neutron stars after probing aftermath of gamma-ray burst.

While investigating the aftermath of a long gamma-ray burst (GRB), two independent teams of astronomers using a host of telescopes in space and on Earth have uncovered the unexpected hallmarks of a kilonova. This is the colossal explosion triggered by colliding neutron stars. This discovery challenges the prevailing theory that long GRBs exclusively come from supernovae, the end-of-life explosions of massive stars.

Dec 9, 2022

Next-generation fighter jet planned for 2035

Posted by in categories: government, military

The UK government has announced it will collaborate with Italy and Japan to develop the Tempest, a new fighter jet featuring a plethora of futuristic technologies.

Dec 9, 2022

Fusion scientists have developed ‘the nano-scale sculpture technique’

Posted by in categories: nanotechnology, nuclear energy, particle physics, transportation

Year 2019 😁 nanoscale fusion.


A research team of fusion scientists has succeeded in developing “the nano-scale sculpture technique” to fabricate an ultra-thin film by sharpening a tungsten sample with a focused ion beam. This enables the nano-scale observation of a cross-section very near the top surface of the tungsten sample using the transmission electron microscope. The sculpture technique developed by this research can be applied not only to tungsten but also to other hard materials.

Hardened materials such as metals, carbons and ceramics are used in automobiles, aircraft and buildings. In a fusion reactor study, “tungsten,” which is one of the hardest metal materials, is the most likely candidate for the armour material of the device that receives the plasma heat/particle load. This device is called divertor. In any hardened materials, nanometer scale damages or defects can be formed very near the top surface of the materials. For predicting a material lifetime, it is necessary to know the types of the damages and their depth profiles in the material. To do this, we must observe a cross-section of the region very near the top surface of the material with nano-scale level.

Continue reading “Fusion scientists have developed ‘the nano-scale sculpture technique’” »

Dec 9, 2022

People will ask ChatGPT anything

Posted by in category: futurism

What would ChatGPT do for a Klondike bar?

Dec 9, 2022

The End of High-School English

Posted by in category: education

I’ve been teaching English for 12 years, and I’m astounded by what ChatGPT can produce.

Dec 9, 2022

Scientists Have Built a Real Star Trek ‘Replicator’ That Builds Objects With Light

Posted by in category: futurism

Year 2019 o.o!


3D printers work by laboriously printing objects layer by layer. For larger objects, that process can take hours or even days.

Continue reading “Scientists Have Built a Real Star Trek ‘Replicator’ That Builds Objects With Light” »

Dec 9, 2022

Edible holograms could decorate or even authenticate food

Posted by in categories: food, holograms

Year 2021 face_with_colon_three


Remember back in the mid-80s, when mass-produced holograms were such a big deal? Since then, they’ve become common on credit cards, currency and other items. Now, thanks to new research, you can actually eat the things.

First of all, why would anyone want an edible hologram? Well, along with simply being used for decorative purposes, they could conceivably also serve to show that a food item hasn’t been tampered with, or to display its name and/or ingredients in a way that proves it isn’t a counterfeit product.

Continue reading “Edible holograms could decorate or even authenticate food” »

Dec 9, 2022

Polarization entanglement-enabled quantum holography

Posted by in categories: particle physics, quantum physics

Year 2021 face_with_colon_three


By exploiting polarization entanglement between photons, quantum holography can circumvent the need for first-order coherence that is vital to classical holography.