Menu

Blog

Page 2710

Jan 18, 2023

Conditional, tissue-specific CRISPR/Cas9 vector system in zebrafish reveal the role of neuropilin-1b in heart regeneration

Posted by in categories: biotech/medical, genetics

CRISPR/Cas9 technology-mediated genome editing has significantly improved the targeted inactivation of genes in vitro and in vivo in many organisms. In this study, we have reported a novel CRISPR-based vector system for conditional tissue-specific gene ablation in zebrafish. Specifically, the cardiac-specific cardiac myosins light chain 2 (cmlc2) promoter drives Cas9 expression to silence the neuropilin-1(nrp1) gene in cardiomyocytes in a heat-shock inducible manner. This vector system establishes a unique tool to regulate the gene knockout in both the developmental and adult stages and hence, widens the possibility of loss-of-function studies in zebrafish at different stages of development and adulthood. Using this approach, we investigated the role of neuropilin isoforms nrp1a and nrp1b in response to cardiac injury and regeneration in adult zebrafish hearts. We observed that both the isoforms (nrp1a and nrp1b) are upregulated after the cryoinjury. Interestingly, the nrp1b-knockout significantly altered heart regeneration and impaired cardiac function in the adult zebrafish, demonstrated by reduced heart rate (ECG), ejection fractions, and fractional shortening. In addition, we show that the knockdown of nrp1b but not nrp1a induces activation of the cardiac remodeling genes in response to cryoinjury. To our knowledge, this is the first study where we have reported a heat shock-mediated conditional knockdown of nrp1a and nrp1b isoforms using CRISPR/Cas9 technology in the cardiomyocyte in zebrafish, and furthermore have identified a crucial role for nrp1b isoform in zebrafish cardiac remodeling and eventually heart function in response to injury.

The authors have declared no competing interest.

Jan 18, 2023

Study shows cyclic breathing technique more effective in reducing stress than mindfulness meditation

Posted by in categories: biotech/medical, health

At team of researchers at Stanford University reports evidence that people who engage in cyclic sighing breathing exercises see a greater reduction in stress than those engaging in mindfulness meditation. In their paper published in the journal Cell Reports Medicine, the researchers describe their study of several different types of stress reduction techniques.

Prior research has shown that while stress can be a at times, such as when it prompts people to do things they know they need to do, more often, it is considered adverse because it can lead to such as hypertension. Thus, stress techniques have been developed to help people reduce stress without resorting to drugs. One such technique is mindfulness meditation, during which a person attempts to relax by putting themselves in the moment in a nonjudgmental way for a period of time. Other techniques involve engaging in . In this new effort, the researchers compared three types of breathing exercises and mindfulness meditation to assess their effectiveness.

The three types of breathing exercises tested included cyclic sighing, in which more time and thought is spent on exhaling than on inhaling or holding the breath; box breathing, in which breathing and holding are done for the same amount of time; and cyclic hyperventilation, in which inhalations last longer than exhalations.

Jan 18, 2023

Researchers develop an artificial neuron closely mimicking the characteristics of a biological neuron

Posted by in categories: biological, chemistry, robotics/AI

In a recent article published in Nature Materials, researchers reported a conductance-based organic electrochemical neuron (c-OECN) that mimicked biological signaling in neurons, especially activation/inactivation of their sodium and potassium channels.

Compilation of the top interviews, articles, and news in the last year.

Jan 18, 2023

What Is Our Universe Expanding Into?

Posted by in categories: computing, cosmology, mapping

One question for Paul Sutter, author of “The Remarkable Emptiness of Existence,” an article in Nautilus this month. Sutter is a theoretical cosmologist at the Institute for Advanced Computational Science at Stony Brook University, where he studies cosmic voids, maps the leftover light from the big bang, and develops new techniques for finding the first stars to appear in the cosmos.

What is our universe expanding into?

That’s a great question. The answer, though, is that it’s not a great question. It’s a little tricky, so let me walk you through it. Yes, our universe is expanding. Our universe has no center and no edge. The Big Bang didn’t happen in one location in space. The Big Bang happened everywhere in the cosmos simultaneously. The Big Bang was not a point in space. It was a point in time. It exists in all of our paths.

Jan 18, 2023

The JWST is already upending our understanding of the early universe

Posted by in category: space

The telescope has already found more early galaxies than expected.

Jan 18, 2023

Record-Breaking Signal From Distant Galaxy Is Furthest of Its Kind Ever Detected

Posted by in category: space

Hydrogen is a key building block of the cosmos. Whether stripped down to its charged core, or piled into a molecule, the nature of its presence can tell you a lot about the Universe’s features on the largest of scales.

For that reason astronomers are very interested in detecting signals from this element, wherever it can be found.

Now the light signature of uncharged, atomic hydrogen has been measured further from Earth than ever before, by some margin. The Giant Metrewave Radio Telescope (GMRT) in India has picked up a signal with a lookback time – the time between the light being emitted and being detected – of a huge 8.8 billion years.

Jan 18, 2023

Researchers produce first-ever toolkit for RNA sequencing analysis using a ‘pantranscriptome’

Posted by in categories: biotech/medical, genetics

Analyzing a person’s gene expression requires mapping their RNA landscape to a standard reference to gain insight into the degree to which genes are “turned on” and perform functions in the body. But researchers can run into issues when the reference does not provide enough information to allow for accurate mapping, an issue known as reference bias.

In a new paper published in the journal Nature Methods, researchers at UC Santa Cruz introduce the first-ever method for analyzing RNA sequencing data genome-wide using a “pantranscriptome,” which combines a transcriptome and a pangenome—a reference that contains from a cohort of diverse individuals, rather than just a single linear strand.

A group of scientists led by UCSC Associate Professor of Biomolecular Engineering Benedict Paten have released a toolkit that allows researchers to map an individual’s RNA data to a much richer reference, addressing reference bias and leading to much more accurate mapping.

Jan 18, 2023

Scientists discover potential new method to treat superbug infections

Posted by in categories: biotech/medical, chemistry, health

Scientists at University of Galway delved into the issue of antimicrobial resistance—one of the greatest threats to human health—discovering the potential to improve treatment options for superbug MRSA infections using penicillin-type antibiotics that have become ineffective on their own.

The research has been published in the journal mBio.

Professor James P O’Gara and Dr. Merve S Zeden in the School of Biological and Chemical Sciences, University of Galway, led the study.

Jan 18, 2023

Modified CRISPR-based enzymes improve the prospect of inserting entire genes into the genome

Posted by in categories: biotech/medical, genetics

Many genetic diseases are caused by diverse mutations spread across an entire gene, and designing genome editing approaches for each patient’s mutation would be impractical and costly.

Investigators at Massachusetts General Hospital (MGH) have recently developed an optimized method that improves the accuracy of inserting large DNA segments into a genome.

This approach could be used to insert a whole normal or “wild-type” replacement gene, which could act as a blanket therapy for a disease irrespective of a patient’s particular mutation.

Jan 18, 2023

Researchers create new system for safer gene-drive testing and development

Posted by in categories: biotech/medical, food, genetics, health

Scientists continue to expand the technological frontiers of CRISPR, along with its enormous potential, in areas ranging from human health to global food supplies. Such is the case with CRISPR-based gene drives, a genetic editing tool designed to influence how genetic elements are passed from one generation to the next.

Gene drives designed for mosquitoes have the potential to curb the spread of malarial infections that cause hundreds of thousands of deaths each year, yet have been raised because such drives can spread quickly and dominate entire populations. Scientists have explored the principles governing the spread of gene-drive elements in targeted populations such as mosquitoes by testing many different combinations of components that constitute the drive apparatus. They have found, however, that there’s still more to explore and that key questions remain.

In the journal Nature Communications, University of California San Diego researchers led by former Postdoctoral Scholar Gerard Terradas, together with Postdoctoral Scholar Zhiqian Li and Professor Ethan Bier, in close collaboration with UC Berkeley graduate student Jared Bennett and Associate Professor John Marshall, describe the development of a new system for testing and developing gene drives in the laboratory and safely converting them into tools for potential real-world applications.