Menu

Blog

Page 2622

Jan 16, 2023

Michael Greve | Longevity Investing @ Vision Weekend France 2022

Posted by in categories: biotech/medical, computing, life extension, nanotechnology

This video was recorded at the Foresight Vision Weekend 2022 at Château du Feÿ in France.

Michael Greve | Longevity Investing.

Continue reading “Michael Greve | Longevity Investing @ Vision Weekend France 2022” »

Jan 16, 2023

Laser-guided lightning Photonics

Posted by in category: climatology

An experimental campaign was conducted on the Säntis mountain in north-eastern Switzerland during the summer of 2021 with a high-repetition-rate terawatt laser. The guiding of an upward negative lightning leader over a distance of 50 m was recorded by two separate high-speed cameras.


A terawatt laser filament is shown to be able to guide lightning over a distance of 50 m in field trials on the Säntis mountain in the Swiss Alps.

Jan 16, 2023

What will the world look like in 2050? #joerogan #shorts #future #science

Posted by in categories: futurism, science

Jan 16, 2023

Scientists Have Developed a Living “Bio-Solar Cell” That Runs on Photosynthesis

Posted by in categories: biological, food, solar power, sustainability

Plants are often thought of as sources of food, oxygen, and decoration, but not as a source of electricity. However, scientists have discovered that by harnessing the natural transport of electrons within plant cells, it is possible to generate electricity as part of a green, biological solar cell. In a recent study published in ACS Applied Materials & Interfaces, researchers for the first time used a succulent plant to create a living “bio-solar cell” that runs on photosynthesis.

Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.

Jan 16, 2023

Blocking radio waves and electromagnetic interference with the flip of a switch

Posted by in categories: innovation, materials

Researchers in Drexel University’s College of Engineering have developed a thin film device, fabricated by spray coating, that can block electromagnetic radiation with the flip of a switch. The breakthrough, enabled by versatile two-dimensional materials called MXenes, could adjust the performance of electronic devices, strengthen wireless connections and secure mobile communications against intrusion.

The team, led by Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, previously demonstrated that the two-dimensional layered MXene materials, discovered just over a decade ago, when combined with an , can be turned into a potent active shield against .

Continue reading “Blocking radio waves and electromagnetic interference with the flip of a switch” »

Jan 16, 2023

New 10-minute scan ‘can detect and cure most common cause of high blood pressure’

Posted by in category: biotech/medical

Findings solve a 60-year-old problem, researchers say A new 10-minute scan could make way for the most common cause of high blood pressure to be detected and cured, new research has suggested. Using a new type of CT scan, doctors were able to cure high blood pressure by lighting up nodules (tiny growths) in a hormone gland cure and removing them.

Jan 16, 2023

This bold new mission will try beaming solar power down from space

Posted by in categories: solar power, space, sustainability

The Space Solar Power Project (SSPP) began in 2011 when Donald Bren — philanthropist, chairman of the Irvine Company, and a lifetime member of the Caltech Board of Trustees — and Caltech’s then-president Jean-Lou Chameau came together to discuss the potential for a space-based solar power research project. By 2013, Bren and his wife (Caltech trustee Brigitte Bren) began funding the project through the Donald Bren Foundation, which will eventually exceed $100 million. As Bren said in a recent Caltech press release:

“For many years, I’ve dreamed about how space-based solar power could solve some of humanity’s most urgent challenges. Today, I’m thrilled to be supporting Caltech’s brilliant scientists as they race to make that dream a reality.”

Continue reading “This bold new mission will try beaming solar power down from space” »

Jan 16, 2023

Epigenetic “reboot” reverses aging in mice and could extend lifespan

Posted by in categories: biotech/medical, genetics, life extension

Scientists at Harvard Medical School have investigated why we age, and identified a possible way to reverse it. In tests in mice, the team showed that epigenetic “software glitches” drive the symptoms of aging – and a system reboot can reverse them, potentially extending lifespan.

Our genome contains our complete DNA blueprint, which is found in every single cell of our bodies. But it’s not the whole picture – an extra layer of information, known as the epigenome, sits above that and controls which genes are switched on and off in different types of cells. It’s as though every cell in our body is working from the same operating manual (the genome), but the epigenome is like a table of contents that directs different cells to different chapters (genes). After all, lung cells need very different instructions to heart cells.

Environmental and lifestyle factors like diet, exercise and even childhood experiences could change epigenetic expression over our lifetimes. Epigenetic changes have been linked to the rate of biological aging, but whether they drove the symptoms of aging or were a symptom themselves remained unclear.

Jan 16, 2023

The loss of epigenetic information accelerates the aging process

Posted by in categories: biotech/medical, genetics, life extension

Chromatin structures and transcriptional networks are known to specify cell identity during development which directs cells into metaphorical valleys in the Waddington landscape. Cells must retain their identity through the preservation of epigenetic information and a state of low Shannon entropy for the maintenance of optimal function. Yeast studies in the 1990s have reported that a loss of epigenetic information compared to genetics can cause aging. Few other studies also confirmed that epigenetic changes are not just a biomarker but a cause of aging in yeasts.

Epigenetic changes associated with aging include changes in DNA methylation (DNAme) patterns, H3K27me3, H3K9me3, and H3K9me3. Many epigenetic changes have been observed to follow a specific pattern. However, the reason for changes in the mammalian epigenome is not yet known. A few clues can be obtained from yeast, where DSB is a significant factor whose repair requires epigenetic regulators Esa1, Gcn5, Rpd3, Hst1, and Sir2. As per the ‘‘RCM’’ hypothesis and ‘Information Theory of Aging’’, aging in eukaryotes occurs due to the loss of epigenetic information and transcriptional networks in response to cellular damage such as a crash injury or a DSB.

A new study in the journal Cell aimed to determine whether epigenetic changes are a cause of mammalian aging.

Jan 16, 2023

Virginia rocket launch to be visible to much of East Coast

Posted by in categories: economics, satellites

WALLOPS ISLAND, Va. — A rocket launch set for Monday, January 23 in Virginia will be visible to much of the east coast of the United States, according to NASA.

The 59-foot-tall Electron rocket from Rocket Lab USA is set to take off from NASA’s Wallops Flight Facility along the southeastern coast of Virginia sometime between 6 and 8 p.m.

The mission, named “Virginia is for Launch Lovers,” will deploy radio frequency monitoring satellites for Virginia based geospatial analytics company HawkEye 360. NASA said the mission will help foster a growing low-Earth space economy.