Menu

Blog

Page 2262

Nov 26, 2023

The AI Time Machine: When Will Superintelligence Arrive?

Posted by in categories: biotech/medical, robotics/AI, supercomputing, time travel

Buckle up, because we’re entering the era of thinking machines that make humans look like chattering chimps! But don’t worry about polishing your resume to impress our future robot overlords just yet. The experts are wildly divided on when superintelligent AI will actually arrive. It’s like we’re staring at an AI time machine without knowing if it will teleport us to 2 years from now or 2 decades into the future!

In one corner, we have Mustafa Suleyman from Inflection AI. He says take a chill pill, we’ve got at least 10–20 more years before the AI apocalypse. But hang on…his company just whipped up the world’s 2nd biggest AI supercomputer! It’s cruising with 3X the horsepower of GPT-4, the chatbot with reading skills rivaling a university professor. So something tells me Suleyman’s timeline is slower than your grandma driving without her glasses.

Continue reading “The AI Time Machine: When Will Superintelligence Arrive?” »

Nov 26, 2023

[AI-003]: The Road to SuperIntelligence: Demystifying AI

Posted by in category: robotics/AI

Intelligence and superintelligence.


Discover the captivating odyssey of Artificial Intelligence (AI) as it ventures into the enigmatic realm of superintelligence. Uncover the essence of AI and its transformative impact on our lives, while delving into the concept of superintelligence and the profound implications it holds for humanity.

Nov 26, 2023

Variational Quantum Linear Solver

Posted by in categories: engineering, mathematics, quantum physics, supercomputing

Carlos Bravo-Prieto1,2,3, Ryan LaRose4, M. Cerezo1,5, Yigit Subasi6, Lukasz Cincio1, and Patrick J. Coles1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87,545, USA. 2 Barcelona Supercomputing Center, Barcelona, Spain. 3 Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain. 4 Department of Computational Mathematics, Science, and Engineering & Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48,823, USA. 5 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA 6 Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87,545, USA

Get full text pdfRead on arXiv Vanity.

Nov 26, 2023

Neon Mysteries in the Cosmos: Webb Telescope Rewrites Planet Formation Playbook

Posted by in category: space

The contrast between the James Webb Space Telescope.

The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.

Nov 26, 2023

James Webb telescope reveals gargantuan ‘Mothra’ star in most colorful image of the universe ever taken

Posted by in category: space

The James Webb and Hubble space telescopes have combined forces to image a cluster of galaxies 4.3 billion light-years away in one of the most colorful pictures of the universe ever taken.

Nov 26, 2023

Optical trapping of optical nanoparticles: Fundamentals and applications

Posted by in categories: nanotechnology, particle physics

A new article published in Opto-Electronic Science reviews the fundamentals and applications of optically trapped optical nanoparticles. Optical nanoparticles are one of the key elements of photonics. They not only allow optical imaging of a plethora of systems (from cells to microelectronics), but also behave as highly sensitive remote sensors.

The success of optical tweezers in isolating and manipulating individual optical nanoparticles has been recently demonstrated. This has opened the door to high-resolution, single-particle scanning and sensing.

The most relevant results in the quickly growing fields of optical trapping of individual optical nanoparticles are summarized by this article. According to different materials and their , the optical nanoparticles are classified into five families: , lanthanide-doped nanoparticles, polymeric nanoparticles, semiconductor nanoparticles, and nanodiamonds. For each case, the main advances and applications have been described.

Nov 26, 2023

Bayesian encoding and decoding as distinct perspectives on neural coding

Posted by in category: neuroscience

This paper characterizes two distinct philosophies underlying previous work on how Bayesian computations are linked to neural data, highlighting how different theories may be motivated by different tacit assumptions and thereby explain different data.

Nov 26, 2023

Advanced Materials To Enable Wireless Brain-Machine Interface

Posted by in categories: materials, neuroscience

Prof. Sakhrat Khizroev (University of Miami) discusses how new and advanced materials can be used for interfacing machines and the human brain!

#brain #machines #advancedmaterials

Nov 26, 2023

Japan firm uses telecom AI to detect flaws in nuclear fusion reactor

Posted by in categories: information science, nuclear energy, robotics/AI, surveillance

Japan’s Nippon Telegraph and Telephone Corporation (NTT) is applying its Deep Anomaly Surveillance (DeAnoS) artificial intelligence tool, originally designed for telecom networks, to predict anomalies in nuclear fusion reactors.

DeAnoS is like a detective, trying to understand which part of the equation is making things weird.

Atomic fusion reactors are at the forefront of scientific innovation, harnessing the enormous energy released by atomic nuclei fusion. This process, which is similar to the Sun’s power source, involves the union of two light atomic nuclei, which results in the development of a heavier nucleus and the release of a massive quantity of energy.

Nov 26, 2023

Google’s DeepMind AI can make better weather forecasts than supercomputers

Posted by in categories: information science, robotics/AI, supercomputing

DeepMind’s new machine learning algorithm takes less than a minute to make its forecasts and can run on a desktop. But it won’t replace traditional forecasts anytime soon.