Jan 7, 2025
Field-level inference: Unlocking the full potential of galaxy maps to explore new physics
Posted by Genevieve Klien in categories: cosmology, evolution, mapping, particle physics
Galaxies are not islands in the cosmos. While globally the universe expands—driven by the mysterious “dark energy”—locally, galaxies cluster through gravitational interactions, forming the cosmic web held together by dark matter’s gravity. For cosmologists, galaxies are test particles to study gravity, dark matter and dark energy.
For the first time, MPA researchers and alumni have now used a novel method that fully exploits all information in galaxy maps and applied it to simulated but realistic datasets. Their study demonstrates that this new method will provide a much more stringent test of the cosmological standard model, and has the potential to shed new light on gravity and the dark universe.
From tiny fluctuations in the primordial universe, the vast cosmic web emerged: galaxies and galaxy clusters form at the peaks of (over)dense regions, connected by cosmic filaments with empty voids in between. Today, millions of galaxies sit across the cosmic web. Large galaxy surveys map those galaxies to trace the underlying spatial matter distribution and track their growth or temporal evolution.