Menu

Blog

Page 14

Dec 6, 2024

Polarization photodetector that mimics desert ant offers pathway for more sensitive, miniaturized imaging systems

Posted by in categories: biotech/medical, computing

Polarization photodetectors (pol-PDs) have widespread applications in geological remote sensing, machine vision, and biological medicine. However, commercial pol-PDs usually require bulky and complicated optical components and are difficult to miniaturize and integrate.

Chinese researchers have made important progress in this area by developing an on-chip integrated polarization .

This study, published in Science Advances on Dec. 4, was conducted by Prof. Li Mingzhu’s group from the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences.

Dec 6, 2024

Emergence of steady quantum transport in a superconducting processor

Posted by in category: quantum physics

The use of quantum simulators for studying non-equilibrium quantum transport has been limited. Here the authors demonstrate the steady quantum transport between many-body qubit baths on a superconducting quantum processor, revealing insights into pure-state statistical mechanics for nonequilibrium quantum systems.

Dec 6, 2024

Scientists reveal superconductivity secrets of an iron-based material

Posted by in categories: engineering, particle physics, transportation

Scientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding published recently in Nature.

Using advanced spectroscopy instruments housed in the UC Irvine Materials Research Institute, the researchers were able to image atom vibrations and thereby observe new phonons—quasiparticles that carry thermal energy—at the interface of an iron selenide (FeSe) ultrathin film layered on a (STO) substrate.

“Primarily emerging from the out-of-plane vibrations of oxygen atoms at the interface and in apical oxygens in STO, these phonons couple with electrons due to the spatial overlap of electron and phonon wave functions at the interface,” said lead author Xiaoqing Pan, UC Irvine Distinguished Professor of materials science and engineering, Henry Samueli Endowed Chair in Engineering and IMRI director.

Dec 6, 2024

Adults grow new brain cells — and these neurons are key to learning by listening

Posted by in category: neuroscience

Understanding how new neurons affect brain function throughout adulthood can offer new approaches to treating epilepsy and dementia.

Dec 6, 2024

5 Best Probiotics for Longevity

Posted by in category: life extension

Did you know the “probiotic” sodas Olipop and Poppi are both facing lawsuits for exaggerating their gut health claims? Jessica did a deep dive to discover which probiotics for longevity are *actually* scientifically backed:


Ignore the gut health hype & choose the best probiotics for longevity based on science– Microbial strains, capsule types & ingredients matter!

Dec 6, 2024

Experimental Quantum Gravity: Bridging the Gap Between Quantum Mechanics and General Relativity

Posted by in category: quantum physics

Avi Loeb explores how experimental quantum gravity may one day help to connect the dots between quantum mechanics and general relativity.

Dec 6, 2024

Bioprinting technique creates functional tissue 10x faster

Posted by in categories: bioprinting, biotech/medical, life extension

Three-dimensional (3D) printing isn’t just a way to produce material products quickly. It also offers researchers a way to develop replicas of human tissue that could be used to improve human health, such as building organs for transplantation, studying disease progression and screening new drugs. While researchers have made progress over the years, the field has been hampered by limited existing technologies unable to print tissues with high cell density at scale.

A team of researchers from Penn State have developed a novel bioprinting technique that uses spheroids, which are clusters of cells, to create complex tissue. This new technique improves the precision and scalability of tissue fabrication, producing tissue 10-times faster than existing methods. It further opens the door to developing functional tissues and organs and progress in the field of regenerative medicine, the researchers said.

They published their findings in Nature Communications.

Dec 6, 2024

Researcher creates 30% stronger concrete using nanocrystals and nanofibers

Posted by in category: materials

Researchers created concrete reinforced with nanocrystals that is 30 percent stronger than traditional cement.

Dec 6, 2024

Hexagons of hexagonal boron nitride join up to form 2D insulator for next-gen electronic devices

Posted by in categories: materials, particle physics

A method that can grow a useful insulating material into exceptionally high-quality films that are just one atom thick and are suitable for industrial-scale production has been developed by an international team led by Xixiang Zhang from KAUST.

The work is published in the journal Nature Communications.

The material, called (hBN), is used in and can also enhance the performance of other two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs).

Dec 6, 2024

ESA’s Proba-3 Satellites Set to Create Artificial Solar Eclipses and Reveal the Sun’s Hidden Layers

Posted by in categories: robotics/AI, satellites

On December 5, 2024, the European Space Agency (ESA) achieved a milestone in space exploration with the successful launch of its Proba-3 mission, which aims to create artificial solar eclipses. This revolutionary mission could provide groundbreaking insights into the Sun’s mysterious atmosphere, the corona. By creating artificial eclipses, the two Proba-3 spacecraft will work together to block the Sun’s light, allowing scientists to observe its outer layers like never before. These solar eclipses will provide a close-up view of the corona for the first time, unlocking secrets that were previously beyond our reach.

The Proba-3 mission is built around a remarkable concept: two satellites, the Occulter and the Coronagraph, will fly in precise formation, separated by a distance of 500 feet. This configuration will allow the Occulter to block the Sun’s light and cast a shadow onto the Coronagraph, creating an artificial eclipse in orbit. By mimicking the conditions of a natural solar eclipse, scientists will be able to observe the Sun’s corona for extended periods, up to six hours at a time, far surpassing the fleeting moments provided by natural eclipses on Earth.

Continue reading “ESA’s Proba-3 Satellites Set to Create Artificial Solar Eclipses and Reveal the Sun’s Hidden Layers” »

Page 14 of 12,125First1112131415161718Last