Menu

Blog

Page 11

Dec 31, 2024

Critical review of aging clocks and factors that may influence the pace of aging

Posted by in categories: biological, computing, genetics, life extension

Background and objectives: Aging clocks are computational models designed to measure biological age and aging rate based on age-related markers including epigenetic, proteomic, and immunomic changes, gut and skin microbiota, among others. In this narrative review, we aim to discuss the currently available aging clocks, ranging from epigenetic aging clocks to visual skin aging clocks.

Methods: We performed a literature search on PubMed/MEDLINE databases with keywords including: “aging clock,” “aging,” “biological age,” “chronological age,” “epigenetic,” “proteomic,” “microbiome,” “telomere,” “metabolic,” “inflammation,” “glycomic,” “lifestyle,” “nutrition,” “diet,” “exercise,” “psychosocial,” and “technology.”

Results: Notably, several CpG regions, plasma proteins, inflammatory and immune biomarkers, microbiome shifts, neuroimaging changes, and visual skin aging parameters demonstrated roles in aging and aging clock predictions. Further analysis on the most predictive CpGs and biomarkers is warranted. Limitations of aging clocks include technical noise which may be corrected with additional statistical techniques, and the diversity and applicability of samples utilized.

Dec 31, 2024

It Literally Takes Fire And Brimstone to Transport Gold to Earth’s Surface

Posted by in category: futurism

The processes that haul gold up to the surface from deep within Earth’s mantle rely on the sulfur that bubbles beneath active volcanoes.

Two new papers have agreed that some forms of sulfur form molecular bonds with gold that would otherwise remain sequestered in the mantle, allowing the precious element to rise.

What they don’t quite agree on is which form of sulfur is most important.

Dec 31, 2024

New method traces molecular gas mass in distant galaxies

Posted by in categories: evolution, space

Prof. Zhao Yinghe from the Yunnan Observatories of the Chinese Academy of Sciences, along with collaborators, have conducted a study examining the correlation between the [C II] 158 micron emission and the CO(1−0) line. Their findings were published in The Astrophysical Journal.

Molecular gas (H2) plays a critical role in , a key factor in the evolution of galaxies. Therefore, measuring the gas content in galaxies is crucial. However, the traditional tracer for H2 mass, the CO(1−0) line, is challenging to detect in the due to various factors, including lower metal content.

As a result, there is a pressing need for alternative H2 tracers, especially as more galaxies at high redshifts are being discovered.

Dec 31, 2024

Microplastics found in multiple human organ tissues correlated with lesions

Posted by in categories: biotech/medical, food, health

Research led by Zhejiang Agriculture and Forestry University in China has performed a metadata investigation into the presence of microplastics in humans. They report a concerning relationship between micro and nanoplastic (MNP) concentrations in damaged tissues and links with multiple health conditions.

Plastic usage soared from 1.5 million metric tons in the 1950s to nearly 390.7 million in 2021. With the increased use in came elevated microscopic plastic pollution circulating in soil and waterways, eventually accumulating in the environment, food webs and human tissues.

Consistent methods to pinpoint and quantify MNPs in human tissues are lacking. Reliable data linking MNPs to human diseases are necessary for assessing potential risks and developing mitigation measures.

Dec 31, 2024

Engineers develop first deep-UV microLED display chips for maskless photolithography

Posted by in categories: computing, nanotechnology

In a breakthrough set to revolutionize the semiconductor industry, the School of Engineering of the Hong Kong University of Science and Technology (HKUST) has developed the world’s first-of-its-kind deep-ultraviolet (UVC) microLED display array for lithography machines. This enhanced efficiency UVC microLED has showcased the viability of a lowered cost maskless photolithography through the provision of adequate light output power density, enabling exposure of photoresist films in a shorter time.

Conducted under the supervision of Prof. Kwok Hoi-Sing, Founding Director of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies at HKUST, the study was a collaborative effort with the Southern University of Science and Technology, and the Suzhou Institute of Nanotechnology of the Chinese Academy of Sciences.

A lithography machine is crucial equipment for semiconductor manufacturing, applying short-wavelength ultraviolet light to make integrated circuit chips with various layouts. However, traditional mercury lamps and deep ultraviolet LED light sources have shortcomings such as large device size, low resolution, high energy consumption, low light efficiency, and insufficient optical power density.

Dec 31, 2024

The science behind your Christmas sweater: How friction shapes the form of knitted fabrics

Posted by in categories: physics, science

A trio of physicists from the University of Rennes, Aoyama Gakuin University, and the University of Lyon have discovered, through experimentation, that it is friction between fibers that allows knitted fabrics to take on a given form. Jérôme Crassous, Samuel Poincloux, and Audrey Steinberger have attempted to understand the underlying mechanics involved in the forms of knitted garments. Their paper is published in Physical Review Letters.

The research team noted that while many of the factors that are involved in intertwined fabrics have been studied to better understand their characteristics (such as why sweaters keep people warm despite the gaps between stitches), much less is known about the form garments made using such techniques can take.

To learn more, they conducted experiments using a nylon yarn and a well-known Jersey knit stitch called the stockinette—a technique that involves forming interlocked loops using knitting needles. They knitted a piece of using 70×70 stitches and attached it to a biaxial tensile machine.

Dec 31, 2024

Researchers improve chaotic mapping for super-resolution image reconstruction

Posted by in categories: information science, mapping, physics, robotics/AI

Super-resolution (SR) technology plays a pivotal role in enhancing the quality of images. SR reconstruction aims to generate high-resolution images from low-resolution ones. Traditional methods often result in blurred or distorted images. Advanced techniques such as sparse representation and deep learning-based methods have shown promising results but still face limitations in terms of noise robustness and computational complexity.

In a recent study published in Sensors, researchers from the Changchun Institute of Optics, Fine Mechanics and Physics of the Chinese Academy of Sciences proposed innovative solutions that integrate chaotic mapping into SR image process, significantly enhancing the image quality across various fields.

Researchers innovatively introduced circle chaotic mapping into the dictionary sequence solving process of the K-singular value decomposition (K-SVD) dictionary update . This integration facilitated balanced traversal and simplified the search for global optimal solutions, thereby enhancing the noise robustness of the SR reconstruction.

Dec 31, 2024

Supermarket Grapes Spark a Quantum Technology Revolution

Posted by in categories: electronics, quantum physics

Scientists at Macquarie University have discovered a novel way to enhance quantum sensor performance using ordinary grapes.

By utilizing the water content and specific size of grapes, they created strong magnetic field hotspots that improve the efficiency of microwave-based quantum sensing.

Supermarket Grapes and Quantum Sensors.

Dec 31, 2024

Even if someone time travels, they may not remember, capture it: Study

Posted by in category: time travel

A new study explores the potential consequences of time travel, including the possibility of losing all your memories.

Dec 31, 2024

10x efficiency boost: US paves the way for next-gen chip production

Posted by in categories: computing, particle physics

Special multi-layer mirrors guide the light through plates called masks, which hold the intricate patterns of the integrated circuits for semiconductor wafers. The light projects the pattern onto a photoresist layer that is etched away to leave the integrated circuits on the chip, according to a press release by LLNL.

The project also aims to investigate the primary hypothesis that the energy efficiency of existing EUV lithography sources for semiconductor production can be improved with technology developed for the novel petawatt-class BAT laser, which uses thulium-doped yttrium lithium fluoride (Tm: YLF) as the gain medium through which the power and intensity of laser beams are increased, as per the release.

Scientists have planned to conduct a demonstration pairing the compact high-rep-rate BAT laser with technologies that generate sources of EUV light using shaped nanosecond pulses and high-energy x-rays and particles using ultrashort sub-picosecond pulses.

Page 11 of 12,291First89101112131415Last