Menu

Blog

Page 11492

May 6, 2016

A New Device Stimulates The Brain To Boost Athletic Performance — By Christina Farr | Fast Company

Posted by in categories: biological, neuroscience

3058464-poster-p-1-the-halo-effect

“Daniel Chao, a Stanford-trained neuroscientist, and Brett Wingeier, a biomedical engineer, founded Halo Neuroscience in 2013. … Halo Sport uses electrodes to stimulate the brain’s motor cortex, which controls planning and voluntary movements. Energized motor neurons send stronger signals to athletes’ muscles, which Chao says allows them to reap greater rewards from every rep.”

Read more

May 6, 2016

On the Design of Escaped Realities — By Venkatesh Rao | Ribbonfarm

Posted by in category: virtual reality

3worlds3mysteriespenrose-300x279

“A question of particular philosophical urgency today is this: are virtual realities currently being designed in 3d game studios going to be more or less of a retreat from reality than the consensual fictions of the past, such as 2d games, novels, sporting events and religious mythologies?”

Read more

May 6, 2016

Original Patent details on DNA Origami Molecular buckets which enables nanomedicine

Posted by in categories: biotech/medical, futurism

Ido Bachelet, Shawn Douglas and George Church filed a patent in 2011 for DNA origami devices useful in the targeted delivery of biologically active entities to specific cell populations.

This is the patent for the DNA nanorobot for molecular precise delivery of treatments to cells. This has been covered several times by Nextbigfuture

Their DNA origami device comprises a scaffold strand and a plurality of staple strands, wherein:

Continue reading “Original Patent details on DNA Origami Molecular buckets which enables nanomedicine” »

May 6, 2016

EpiBone: We obtain precise 3D model of the anatomical defect from the patient’s CT scan

Posted by in category: biotech/medical

https://youtube.com/watch?v=NKeeHahhNL4

At the same time we extract adult stem cells from the patient.

Read more

May 5, 2016

What would it take to become superhero?

Posted by in category: futurism

Want to be IronMan, Captain America, Super Woman, X-Men Mutant, etc. Well, you maybe able to.


If watching “Captain America: Civil War” this weekend revives your childhood dreams of becoming a superhero, technology may be on your side to make it happen — but science is a little more discouraging.

Read more

May 5, 2016

Gene cascade specifies two distinct neuron sets expressing Nplp1

Posted by in categories: biological, neuroscience

A study of the embryonic nervous system of the fruit fly throws light on how two neuronal cell lineages that develop at different times and in different places in the ventral nerve cord of the embryo can ultimately result in very similar neuronal subtypes. The study, publishing in the Open Access journal PLOS Biology on 5th May, is a collaboration between research teams in Madrid (Spain) and Linköping (Sweden).

In the paper, Hugo Gabilondo, Johannes Stratmann and their colleagues report that a crucial terminal selector gene, col, is activated by different sets of spatio-temporal selector genes in the two different neuronal cell lineages. In dAp neurons, which are present throughout the thorax and abdominal segments, col is activated directly by the action of the early temporal genes Kruppel (Kr) and pdm, and the GATA transcription factor gene grain (grn). By contrast, in Tv1 neurons, which are specific to the thoracic segments, col is activated by the late temporal gene cas, together with several other genes that feed forward onto the terminal selector gene cascade downstream of col. The result is expression of the neuropeptide Nplp1 in both dAp and Tv1 neurons.

The developing generates many different neuronal cell types; understanding this process of cell fate specification remains a major challenge for biologists. Complex cascades of regulatory genes are known to be involved, starting with spatial and temporal selector genes and finishing with terminal selector genes, all of which act in various combinations to dictate the ultimate neuronal cell type. A particular type often arises in several parts of the nervous system and at different stages of development, however, suggesting that different spatio-temporal cues can converge on the same terminal selectors to generate a similar cell fate. This study reports evidence of this phenomenon in an example from the fruit fly, Drosophila melanogaster.

Continue reading “Gene cascade specifies two distinct neuron sets expressing Nplp1” »

May 5, 2016

Identification of a gene signature associated with dilated cardiomyopathy

Posted by in category: futurism

Dilated cardiomyopathy (DCM) is a progressive thinning of heart muscle that commonly results in heart failure. DCM is a known secondary complication of conditions such as alcohol abuse and infection and is also an inherited disorder. However, the.

Read more

May 5, 2016

Nashville School Uses Augmented Reality

Posted by in categories: augmented reality, education

Nice


J.E. Moss Elementary School, a Title I school in Nashville, TN, has adopted an augmented reality program to help improve reading skills in one of its kindergarten classes.

Letters alive, a supplemental reading software kit from Alive Studios, has aided teacher Greg Smedley-Warren and boosted his kindergarten class’ literacy scores above all the other kindergarten classrooms in his school, according to a prepared statement. His class includes several ELL and “at risk” students.

Continue reading “Nashville School Uses Augmented Reality” »

May 5, 2016

Lele flagella motor research develops novel insights in cellular mechanics

Posted by in categories: biotech/medical, electronics, engineering, nanotechnology

Using bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs.


Dr. Pushkar Lele, assistant professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, is developing novel insights in cellular mechanics with bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs. Lele’s group also focuses on unraveling the fundamental principles underlying interactions in biological soft-matter to build bio-nanotechnology-based molecular machines. Lele’s lab currently focuses on a unique electric rotary device found in bacteria — the flagellar motor.

According to Lele, it is well established how motile bacteria employ flagellar motors to swim and respond to chemical stimulation. This allows bacteria to search for nutrients and evade harmful chemicals. However, in his recent work, Lele has now demonstrated that the motor is also sensitive to mechanical stimulation and identified the protein components responsible for the response. Sensing initiates a sensitive control of the assemblies of numerous proteins that combine to form the motor. Control over motor assemblies facilitates fine-tuning of cellular behavior and promotes chances of survival in a variety of environments.

Continue reading “Lele flagella motor research develops novel insights in cellular mechanics” »

May 5, 2016

US military agency DARPA: We want biometric tech to ID individual hackers

Posted by in categories: military, privacy

Of course; makes sense.


DARPA hopes it can ‘fingerprint’ individual cyberattackers and build a picture of their handiwork over time.

Read more