Menu

Blog

Page 10

May 24, 2024

Scientists print invisible, spider silk-like sensors directly on skin

Posted by in categories: biological, innovation

Fiber sensors conform to skin:


In another scientific marvel inspired by the wonder that is spider silk, researchers have developed an innovative method to create adaptive and eco-friendly sensors that can be seamlessly and invisibly printed onto various biological surfaces, such as a finger or a flower petal.

This breakthrough in high-performance bioelectronics allows for the customization of sensors on a wide range of surfaces, from fingertips to the delicate seedheads of dandelions, by printing them directly onto them.

May 24, 2024

How air pollution affects the digestive system

Posted by in categories: biotech/medical, health

Fine air particles, less than 2.5 micrometers in diameter (PM2.5), are a major air pollutant linked to various health problems. These particles can travel deep into the lungs and even enter the bloodstream when inhaled. Recent research suggests a major health concern: PM2.5 exposure can also damage the digestive system, including the liver, pancreas, and intestines.

May 24, 2024

Genetic cause of rare childhood immune disorders discovered

Posted by in category: genetics

Scientists have pinpointed genetic changes that can leave children born with little to no immune defense against infection.

May 24, 2024

Cloud Computing under the Cover of Quantum

Posted by in categories: business, computing, quantum physics

A secure method for cloud-based quantum computing harnesses the power of quantum physics to keep data confidential.

Progress in quantum technology has been swift, but we still are far from the day when everyone will have a quantum computer in their house or at their business. The early stages of quantum computing will likely rely on a quantum version of the “cloud,” where users send data and computing tasks to a state-of-the-art quantum machine hosted by Google, IBM, or another company. But is that approach secure? It can be, thanks to the impenetrable secrecy of quantum-based protocols. A recent experiment demonstrates a version of “blind quantum computing” using trapped ions [1]. The protocol is scalable, meaning it offers potential to be incorporated into larger and larger quantum computing systems.

Quantum computers have the potential to be game changers in computationally intensive tasks such as drug discovery and material design. In these highly competitive sectors, there would be concerns about using a cloud-based quantum computer. “A company searching for a new wonder drug or for a high-performance battery material wouldn’t want to reveal confidential secrets,” explains Peter Drmota of the University of Oxford. However, it has been shown—in theory—that one can perform computations on a remote quantum computer while hiding the data and the operations done on such data. “Blind quantum computing could give a client confidence to use whoever’s quantum computer,” Drmota says.

May 24, 2024

Time-Symmetric Motion Maximizes Energy Efficiency in Fluid

Posted by in categories: biotech/medical, nanotechnology

Researchers discovered a trick for dragging an object in a fluid with minimal effort, suggesting an optimal strategy for nanorobots.

A research team has demonstrated that the most efficient protocol for dragging a microscopic object through a fluid has an unexpected feature: the variation of the velocity with time after the midpoint of the trip is the reverse of its variation up to the midpoint [1]. This time-symmetry property, the researchers say, can help to identify the most efficient control strategy in a wide variety of micromechanical systems and could improve the operation of tiny machines.

Biomedical engineers are exploring micro-and nanoscale devices that swim through the body under their own power to deliver drugs [2]. Machine-like motion at tiny scales is also common in biology, for instance in the transport of compartments called vesicles by motor proteins inside cells [3]. To understand the energetics of such systems, Sarah Loos of the University of Cambridge and colleagues have studied a simple model of microscale transport. They used optical tweezers—a laser beam that can trap a small particle—to drag a 2.7-micrometer-diameter silica sphere through fluids. “This problem is simple enough to be solved analytically and realized experimentally, yet rich enough to show some fundamental characteristics of optimal control in complex systems,” says Loos. In practice, the device inducing the motion “could be a nanorobot carrying a drug molecule or a molecular motor that pulls or pushes against a microscopic object.”

May 24, 2024

Cosmic Strings’ Imprints in High-Frequency Gravitational Waves

Posted by in category: physics

Spacetime wrinkles known as cosmic strings, which might have formed in the early Universe, could be a dominant source of gravitational waves at ultrahigh frequencies, according to new calculations.

May 24, 2024

Ultrablack Coating Could Reduce Stray Light in Telescopes

Posted by in category: futurism

Using atomic layer deposition, scientists have created a new light-absorbing thin film that could help telescopes see a starrier night.

May 24, 2024

Solar Composition Altered by Plasma Waves

Posted by in categories: chemistry, particle physics, space travel

New solar observations indicate that plasma waves are responsible for the Sun’s outer atmosphere having different abundances of chemical elements than the Sun’s other layers.

The solar corona is a halo of hot, tenuous plasma that surrounds the Sun out to large distances. It is visible during solar eclipses (Fig. 1) but is usually outshone by the glare of the Sun’s surface, or photosphere. The corona has different abundances of chemical elements than the rest of the Sun, and a longstanding question has been why this disparity exists. New solar measurements by Mariarita Murabito at the Italian National Institute of Astrophysics (INAF) and colleagues suggest that the difference is caused by plasma waves dragging easily ionized elements from the Sun’s lower atmosphere into the corona [1]. This finding could lead to a better understanding of the structure of stars.

The corona is of great interest to solar physicists, partly because it produces the solar wind—an outflow of hot gas from the Sun. The solar wind is most evident to us on Earth when its particles become trapped in Earth’s magnetic field and collide with our atmosphere, causing an aurora. An important problem in solar physics is to determine which coronal structures generate the solar wind and how solar conditions affect the outflow’s properties. The elemental composition of the solar wind sheds light on its origins, as this composition does not change once the gas leaves the Sun. The solar wind can be directly sampled by spacecraft in situ, and its elemental abundances can be compared to coronal abundances inferred from spectroscopy.

May 24, 2024

Researchers develop organic photoredox catalysts with enhanced stability and recyclability

Posted by in categories: chemistry, energy

In recent years, global environmental concerns have prompted a shift toward eco-friendly manufacturing in the field of organic synthetic chemistry. In this regard, research into photoredox catalytic reactions, which use light to initiate redox or reduction-oxidation reactions via a photoredox catalyst, has gained significant attention. This approach reduces the reliance on harsh and toxic reagents and uses visible light, a clean energy source.

May 24, 2024

Combining human olfactory receptors with artificial organic synapses and a neural network to sniff out cancer

Posted by in categories: biotech/medical, chemistry, robotics/AI

A team of chemical and biological engineers at Seoul National University in the Republic of Korea has developed a proof-of-concept device that could one day lead to the creation of an artificial nose.

Page 10 of 11,217First7891011121314Last