Menu

Blog

Archive for the ‘nanotechnology’ category: Page 54

Dec 10, 2022

Hugo de Garis — From Nanotech to Femtotech — There’s Plenty More Room at the Bottom

Posted by in categories: bioengineering, biotech/medical, genetics, information science, nanotechnology, robotics/AI

Discusses the possibility of Femtotech and the technological possibilities it may unlock. Not long ago nanotechnology was a fringe topic; now it’s a flourishing engineering field, and fairly mainstream. For example, while writing this article, I happened to receive an email advertisement for the “Second World Conference on Nanomedicine and Drug Delivery,” in Kerala, India. It wasn’t so long ago that nanomedicine seemed merely a flicker in the eyes of Robert Freitas and a few other visionaries!

But nano is not as small as the world goes. A nanometer is 10–9 meters – the scale of atoms and molecules. A water molecule is a bit less than one nanometer long, and a germ is around a thousand nanometers across. On the other hand, a proton has a diameter of a couple femtometers – where a femtometer, at 10–15 meters, makes a nanometer seem positively gargantuan. Now that the viability of nanotech is widely accepted (in spite of some ongoing heated debates about the details), it’s time to ask: what about femtotech? Picotech or other technologies at the scales between nano and femto seem relatively uninteresting, because we don’t know any basic constituents of matter that exist at those scales. But femtotech, based on engineering structures from subatomic particles, makes perfect conceptual sense, though it’s certainly difficult given current technology.

Continue reading “Hugo de Garis — From Nanotech to Femtotech — There’s Plenty More Room at the Bottom” »

Dec 9, 2022

Fusion scientists have developed ‘the nano-scale sculpture technique’

Posted by in categories: nanotechnology, nuclear energy, particle physics, transportation

Year 2019 😁 nanoscale fusion.


A research team of fusion scientists has succeeded in developing “the nano-scale sculpture technique” to fabricate an ultra-thin film by sharpening a tungsten sample with a focused ion beam. This enables the nano-scale observation of a cross-section very near the top surface of the tungsten sample using the transmission electron microscope. The sculpture technique developed by this research can be applied not only to tungsten but also to other hard materials.

Hardened materials such as metals, carbons and ceramics are used in automobiles, aircraft and buildings. In a fusion reactor study, “tungsten,” which is one of the hardest metal materials, is the most likely candidate for the armour material of the device that receives the plasma heat/particle load. This device is called divertor. In any hardened materials, nanometer scale damages or defects can be formed very near the top surface of the materials. For predicting a material lifetime, it is necessary to know the types of the damages and their depth profiles in the material. To do this, we must observe a cross-section of the region very near the top surface of the material with nano-scale level.

Continue reading “Fusion scientists have developed ‘the nano-scale sculpture technique’” »

Dec 9, 2022

The Megastructure Compendium

Posted by in categories: cosmology, engineering, nanotechnology, nuclear energy, sustainability

Sign up for a Curiosity Stream subscription and also get a free Nebula subscription (the streaming platform built by creators) here: https://curiositystream.com/isaacarthur.
In the future humanity may build enormous structures, feats of mega-engineering that may rival planets or even be of greater scope. This episode catalogs roughly 100 major types of Megastructure, from those that are cities in space to those that rival galaxies.

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Continue reading “The Megastructure Compendium” »

Dec 8, 2022

The smallest robotic arm you can imagine is controlled by artificial intelligence

Posted by in categories: nanotechnology, particle physics, robotics/AI

Researchers used deep reinforcement learning to steer atoms into a lattice shape, with a view to building new materials or nanodevices.

In a very cold vacuum chamber, single atoms of silver form a star-like . The precise formation is not accidental, and it wasn’t constructed directly by either. Researchers used a kind of artificial intelligence called learning to steer the atoms, each a fraction of a nanometer in size, into the lattice shape. The process is similar to moving marbles around a Chinese checkers board, but with very tiny tweezers grabbing and dragging each atom into place.

The main application for deep is in robotics, says postdoctoral researcher I-Ju Chen. “We’re also building robotic arms with deep learning, but for moving atoms,” she explains. “Reinforcement learning is successful in things like playing chess or video games, but we’ve applied it to solve at the nanoscale.”

Dec 7, 2022

Biomembrane research findings could advance understanding of computing and human memory

Posted by in categories: bioengineering, biological, computing, health, nanotechnology

While studying how bio-inspired materials might inform the design of next-generation computers, scientists at the Department of Energy’s Oak Ridge National Laboratory achieved a first-of-its-kind result that could have big implications for both edge computing and human health.

Results published in Proceedings of the National Academy of Sciences show that an artificial is capable of long-term potentiation, or LTP, a hallmark of biological learning and . This is the first evidence that a cell membrane alone—without proteins or other biomolecules embedded within it—is capable of LTP that persists for many hours. It is also the first identified nanoscale structure in which memory can be encoded.

“When facilities were shut down as a result of COVID, this led us to pivot away from our usual membrane research,” said John Katsaras, a biophysicist in ORNL’s Neutron Sciences Directorate specializing in neutron scattering and the study of biological membranes at ORNL.

Dec 7, 2022

Nanorobots: The Future of Biotechnology

Posted by in categories: biotech/medical, nanotechnology

Nanorobots are the next step in biotechnology and could be the hidden clue for curing cancer and other diseases for good. Nanotechnology doesn’t come without…

Dec 7, 2022

Researchers develop nano-based technology to fight osteoporosis

Posted by in categories: biotech/medical, nanotechnology

University of Central Florida researchers have created unique technology for treating osteoporosis that uses nanobubbles to deliver treatment to targeted areas of a person’s body.

The new technology was developed by Mehdi Razavi, an assistant professor in UCF’s College of Medicine and a member of the Biionix Cluster at UCF, and UCF biomedical sciences student Angela Shar at the Biomaterials and Nanomedicine Lab, as part of the lab’s focus on developing tools for diagnostics and therapeutics.

Osteoporosis is a disease marked by an imbalance between the body’s ability to form new , or ossification, and break down, or remove, old , known as resorption.

Dec 7, 2022

Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications

Posted by in categories: biotech/medical, chemistry, health, nanotechnology

Two categories of nanofabrication technologies are known as top-down and bottom-up approaches [5]. For the former, nanosized materials are prepared through the rupture of bulk materials to fine particles, and such a process is usually conducted by diverse physical and mechanical techniques like lithography, laser ablation, sputtering, ball milling and arc-discharging [6, 7]. These techniques themselves are simple, and nanosized materials can be produced quickly after relatively short technological process, but expensive specialized equipment and high energy consumption are usually inevitable. Meanwhile, a variety of efficient chemical bottom-up methods, where atoms assemble into nuclei and then form nanoparticles, have been intensively studied to synthesize and modulate nanomaterials with specific shape and size [8].

Indeed, chemical methodologies, including but not limited to, aqueous reaction using chemical reducing agents (e.g. hydrazine hydrate and sodium borohydride), electrochemical deposition, hydrothermal/solvothermal synthesis, sol–gel processing, chemical liquid/vapor deposition, have been developed up to now [5, 6]. These approaches can not only produce diverse nanomaterials with fairly high yields, but also endow fine controllability in tailoring nanostructures and properties of the products. Nevertheless, they have been encountering some serious challenges of harsh reaction conditions (e.g. pH and temperature), potential risks in human health and environment, and low cost-effectiveness. Moreover, there are biosafety concerns on products synthesized chemically using hazardous reagents, which restricts their applications in many areas, particularly in medicines and pharmaceuticals [9].

Impressively, biological methodology is becoming a favourite in nanomaterial synthesis nowadays to address challenges in chemical synthesis. Compared to chemical routes, biosynthesis using natural and biological materials as reducing, stabilizing and capping agents are simple, energy-and cost-effective, mild and environment-friendly, which is termed as “Green Chemistry” [2, 6]. More significantly, the biologically synthesized nanomaterials have much better competitiveness in biocompatibility, compared to those chemically derived counterparts. On the one hand, the biogenic nanomaterials are free from toxic contamination of by-products that are usually involved in chemical synthesis process; on the other hand, the biosynthesis do not need additional stabilizing agents because either the used organisms themselves or their constituents can act as capping and stabilizing agents and the attached biological components in turn form biocompatible envelopes on the resultant nanomaterials, leading to actively interact with biological systems [2]. As one of the most abundant biological resources, some microorganisms have adapted to habitat contaminated with toxic metals, and thus evolved powerful tactics for remediating polluted environment while recycling metal resources [7, 10], and some review articles on the biosynthesis of MNPs using diverse microorganisms including bacteria, yeast, fungi, alga, etc. and their applications have been published in recent years [1, 2, 6, 7, 10].

Dec 6, 2022

Girl with a Pearl Earring and Mona Lisa recreated with nanotechnology

Posted by in categories: media & arts, nanotechnology

A technique that uses nanoscale structures to reproduce colour has been employed to make copies of famous paintings, and could also help fight counterfeiting.

Dec 6, 2022

X-rays reveal elusive chemistry for better electric vehicle batteries

Posted by in categories: chemistry, energy, nanotechnology, sustainability, transportation

Researchers around the world are on a mission to relieve a bottleneck in the clean energy revolution: batteries. From electric vehicles to renewable grid-scale energy storage, batteries are at the heart of society’s most crucial green innovations—but they need to pack more energy to make these technologies widespread and practical.

Now, a team of scientists led by chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Pacific Northwest National Laboratory (PNNL) has unraveled the complex chemical mechanisms of a component that is crucial for boosting energy density: the interphase. Their work published today in Nature Nanotechnology.

Page 54 of 257First5152535455565758Last