Blog

Archive for the ‘chemistry’ category

Aug 22, 2016

Now we can watch DNA Repair itself!

Posted by in categories: biotech/medical, chemistry

Watching DNA self-repair itself.


After 2015’s Nobel Prize in chemistry was awarded for advancements in our understanding of DNA repair, a recent Nature report characterises the mechanism in molecular detail. The implications for cancer research are vast.

Researchers in Paris, France, and Bristol, England, have leveraged recent advances in microscopy and fluorescent imaging to characterise the entire process of DNA repair at the molecular level. They were able to observe RNA polymerase, which ‘reads’ DNA and initiates its replication, as it moved along the DNA strand.

Continue reading “Now we can watch DNA Repair itself!” »

Aug 15, 2016

Moving metal promises dynamic circuits

Posted by in categories: chemistry, futurism

Scientists have developed self-propelling liquid metals that could be used for future electronic circuits.

Current electronic technology is based on solid state components with fixed metallic tracks and semiconductors. Researchers are investigating soft circuit systems that act like live cells, communicating with each other to form new circuits when possible. In one study, Professor Kalantar-zadeh from RMIT University in Australia, along with his researchers immersed a number of different metallic elements, in the form of liquid droplets, in water.

Continue reading “Moving metal promises dynamic circuits” »

Aug 14, 2016

Revolutionary computer program could change chemistry forever

Posted by in categories: biotech/medical, chemistry, computing

Nice.


Software can tell chemists how to make new molecules from scratch and its inventors claim it has already mapped out a cheaper route to a blockbuster drug.

Continue reading “Revolutionary computer program could change chemistry forever” »

Aug 11, 2016

Quantum dots with impermeable shell used as a powerful tool for “nano-engineering”

Posted by in categories: 3D printing, chemistry, engineering, nanotechnology, quantum physics, wearables

I never get tired of talking about the many uses for Q-dot technology. One area that has me even more intrigued is how it is used in crystallized formations. I expect to see more and more experimenting on crystalized formations on many fronts including complex circuitry for performance and storage.

And, with synthetic technology today plus 3D printing along with Q-dots we could (as I have eluded to many times over several months) truly begin to see some amazing technology be developed on the wearable tech front.

Wearables could include synthetic circuitry stones in various accessories to not only store information, but also serve as another form of unique id because in synthetic stones we have been able (like in nature) create complex crystalized formations that are each unique/ 1 of a kind like a unique finger print, or iris of an eye. I expect to see some very interesting things coming in this space.

Continue reading “Quantum dots with impermeable shell used as a powerful tool for ‘nano-engineering’” »

Aug 11, 2016

The laws of nature make life on other planets inevitable — according to this groundbreaking theory

Posted by in categories: alien life, biological, chemistry, physics

According to theoretical physicist and super-genius Stephen Hawking, “The human race is just a chemical scum on a moderate-sized planet orbiting round a very average star in the outer suburb of one among a hundred billion galaxies.” Indeed, to most modern scientists we are nothing more than an entirely random ‘happy accident’ that likely would not occur if we were to rewind the tape of the universe and play it again. But what if that is completely wrong? What if life is not simply a statistical anomaly, but instead an inevitable consequence of the laws of physics and chemistry?

A new theory of the origin of life, based firmly on well-defined physics principles, provides hefty support for the notion that biological life is a “cosmic imperative”. In other words, organic life had to eventually emerge. If such a theory were true, it would mean that it is very likely that life is widespread throughout the universe.

Aug 10, 2016

Chemical Switch Engineered into a Light-Driven Proton Pump

Posted by in categories: bioengineering, biotech/medical, chemistry, physics

Synthetic biology is an emerging and rapidly evolving engineering discipline. Within the NCCR Molecular Systems Engineering, Scientists from Bernese have developed a version of the light-driven proton pump proteorhodopsin, which is chemically switchable and it is also an essential tool to efficiently power synthetic cells and molecular factories.

Synthetic biology is a highly complex field with numerous knowledge branches that incorporate physics, biology, and chemistry into engineering. It aims to design synthetic cells and molecular factories with innovative functions or properties that can be applied in medical and biological research or healthcare, industry research.

These artificial systems are available in the nanometer scale and are developed by assembling and combining current, synthetic or engineered building blocks (e.g., proteins). Molecular systems are applicable for a wide range of applications, for instance these systems can be used for waste disposal, medical treatment or diagnosis, energy supply and chemical compound synthesis.

Aug 4, 2016

New way to model molecules

Posted by in categories: biological, chemistry, computing, encryption, quantum physics, robotics/AI, solar power, sustainability

Magine a future in which hyper-efficient solar panels provide renewable sources of energy, improved water filters quickly remove toxins from drinking water, and the air is scrubbed clean of pollution and greenhouse gases. That could become a reality with the right molecules and materials.

Scientists from Harvard and Google have taken a major step toward making the search for those molecules easier, demonstrating for the first time that a quantum computer could be used to model the electron interactions in a complex molecule. The work is described in a new paper published in the journal Physical Review X by Professor Alán Aspuru-Guzik from the Department of Chemistry and Chemical Biology and several co-authors.

“There are a number of applications that a quantum computer would be useful for: cryptography, machine learning, and certain number-theory problems,” Aspuru-Guzik said. “But one that has always been mentioned, even from the first conceptions of a quantum computer, was to use it to simulate matter. In this case, we use it to simulate chemistry.”

Aug 2, 2016

The Next Five Years will be a Critical Time for the Development of Rejuvenation Biotechnology after the SENS Model of Damage Repair

Posted by in categories: bioengineering, biotech/medical, chemistry, internet, life extension

Tempus fugit. I’m just about old enough to remember a time in which 2020 was the distant future of science fiction novels, too far away to be thinking about in concrete terms, a foreign and fantastical land in which anything might happen. Several anythings did in fact happen, such as the internet, and the ongoing revolution in biotechnology that has transformed the laboratory world but leaks into clinics only all too slowly. Here we are, however, close enough to be making plans and figuring out what we expect to be doing when the third decade of the 21st century gets underway. The fantastical becomes the mundane. We don’t yet have regeneration of organs and limbs, or therapies to greatly extend life, but for these and many other staples of golden age science fiction, the scientific community has come close enough to be able to talk in detail about the roads to achieving these goals.

Of all the things that researchers might achieve with biotechnology in the near future, control over aging is by far the most important. Aging is the greatest cause of death and suffering in the world, and none of us are getting any younger. That may change, however. SENS, the Strategies for Engineered Negligible Senescence, is a synthesis of the scientific view of aging as an accumulation of specific forms of cell and tissue damage, pulling in a century of evidence from many diverse areas of medical science to support this conclusion. Aging happens because the normal operation of our cellular biochemistry produces damage, wear and tear at the level of molecules and molecular structures, and some of that damage accumulates to cause failure of tissues and organs, and ultimately death.

Jul 31, 2016

Lab 2.0: Will Computers Replace Experimental Science?

Posted by in categories: chemistry, computing, mobile phones, physics, science, solar power, sustainability

We spend our lives surrounded by hi-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Continue reading “Lab 2.0: Will Computers Replace Experimental Science?” »

Jul 29, 2016

He Wants to Inject Your Bloodstream With Healing Nanobots

Posted by in categories: biotech/medical, chemistry, nanotechnology

This Catalonian chemistry wiz is developing a jet-pack engine to deliver medicine inside our bodies.

Page 1 of 1212345678Last