Toggle light / dark theme

Robotics Company Builds Straight-Up Terminator

“I am kind of blown away that they can get motors to work in such an elegant way. I assumed it was soft body mechanics,” wrote another. “Wow.”

Iron made its first debut on Wednesday, when XPeng CEO He Xiaopeng introduced the unit as the “most human-like” bot on the market to date. Per Humanoids Daily, the robot features “dexterous hands” with 22 degrees of flexibility, a “human-like spine,” gender options, and a digital face.

According to He, the bot also contains the “first all-solid-state battery in the industry,” as opposed to the liquid electrolyte typically found in lithium-ion batteries. Solid-state batteries are considered the “holy grail” for electric vehicle development, a design choice He says will make the robots safer for home use.

New recharge-to-recycle reactor turns battery waste into new lithium feedstock

As global electric vehicle adoption accelerates, end-of-life battery packs are quickly becoming a major waste stream. Lithium is costly to mine and refine, and most current recycling methods are energy- and chemical-intensive, often producing lithium carbonate that must be further processed into lithium hydroxide for reuse.

How plastics grip metals at the atomic scale: Molecular insights pave way for better transportation materials

What makes some plastics stick to metal without any glue? Osaka Metropolitan University scientists have peered into the invisible adhesive zone that forms between certain plastics and metals—one atom at a time—to uncover how chemistry and molecular structure determine whether such bonds bend or break.

Their insights clarify metal–plastic bonding mechanisms and offer guidelines for designing durable, lightweight, and more sustainable hybrid materials for use in transportation.

Combining the strength of metal with the lightness and flexibility of plastic, polymer–metal hybrid structures are emerging as key elements for building lighter, more fuel-efficient vehicles. The technology relies on bonding metals with plastics directly, without adhesives. The success of these hybrids, however, hinges on how well the two materials stick together.

Microsoft Flight Simulator isn’t just for nerdy dads anymore: Boeing will start using its tech to train actual pilots

The most recent incarnation of Microsoft’s long-running flight simulator series is a genuine marvel, whether you fancy yourself an ace pilot or just want to crash spectacularly into the Eiffel Tower. Speaking more to the former instinct, Microsoft is teaming up with Boeing to put that high-fidelity simulation to work in a virtual training program for novice pilots.

As noted in a press release from Boeing, the Virtual Airplane Procedures Trainer was announced last Thursday at the European Aviation Training Summit in Portugal. The release notes the new program is “powered by Microsoft Azure and Microsoft Flight Simulator,” and is “designed to empower pilots and flight training teams with immersive, accessible and customizable tools that elevate pilot learning and readiness.”

Self-driving system makes key plastic ingredient using in-house generated H₂O₂

An eco-friendly system capable of producing propylene oxide (PO) without external electricity or sunlight has been developed. PO is a vital raw material used in manufacturing household items such as polyurethane for sofas and mattresses, as well as polyester for textiles and water bottles.

A research team led by Professors Ja Hun Kwak and Ji-Wook Jang from the School of Energy and Chemical Engineering at UNIST, in collaboration with Professor Sung June Cho of Chonnam National University, has successfully created a self-driven PO production system utilizing in-situ generated hydrogen peroxide (H₂O₂).

The research is published in Nature Communications.

Composite metal foam could lead to safer hazmat transportation

A new study finds that composite metal foam (CMF) can withstand tremendous force—enough to punch a hole in a railroad tank car—at much lower weight than solid steel. The finding raises the possibility of creating a safer generation of tanker cars for transporting hazardous materials.

The researchers have also developed a that can be used to determine what thickness of CMF is needed in order to provide the desired level of protection necessary for any given application. The paper, “Numerical Model and Experimental Validation of Composite Metal Foam in Protecting Carbon Steel Against Puncture,” is published in Advanced Engineering Materials.

“Railroad tank cars are responsible for transporting a wide range of hazardous materials, from acids and chemicals to petroleum and liquefied ,” says Afsaneh Rabiei, corresponding author of a paper on the work and a professor of mechanical and aerospace engineering at North Carolina State University.

Scientists create new bullet-proof fiber that is stronger and thinner than Kevlar

Kevlar has met its match. For decades, it has been the gold standard for impact protection, from bulletproof vests to armored vehicles, and is still widely used. But scientists have now developed a new composite material that is stronger, tougher and better at stopping bullets than Kevlar even though it is much thinner. Their study is published in the journal Matter.

To stop high-speed impacts, like a bullet, a material needs to resist breaking under force () and be able to absorb a lot of energy without shattering or failing (high toughness). However, there is a problem with current solutions, such as Kevlar, which is made from aramid fibers. When scientists try to make these fibers stronger, they often become more brittle, making it difficult to achieve both simultaneously. This is a common trade-off in materials science when you try to improve a material’s overall performance.

How silver iodide triggers ice formation at the atomic level

No one can control the weather, but certain clouds can be deliberately triggered to release rain or snow. The process, known as cloud seeding, typically involves dispersing small silver iodide particles from aircraft into clouds. These particles act as seeds on which water molecules accumulate, forming ice crystals that grow and eventually become heavy enough to fall to the ground as rain or snow.

Until now, the microscopic details of this process have remained unclear. Using and , researchers at TU Wien have investigated how interacts with water at the .

Their findings, published in Science Advances, reveal that silver iodide exposes two fundamentally different surfaces, but only one of them promotes . The discovery deepens our understanding of how clouds form rain and snow and may guide the design of improved materials for inducing precipitation.

/* */