Toggle light / dark theme

Rise of the robots: The promise of physical AI

A pair of swiveling, human-like robotic arms, built for physical artificial intelligence research, mirror the motions of an operator in a VR headset twirling his hands like a magician.

With enough practice, arms like these can complete everyday tasks alone, says Tokyo company Enactic, which is developing humanoid robots to wash dishes and do laundry in short-staffed Japanese .

Welcome to the future of AI as it starts to infiltrate the material world in the form of smart robots, self-driving cars and other autonomous machines.

Water Lingered Underground on Mars

“Our findings show that Mars didn’t simply go from wet to dry,” said Dr. Dimitra Atri. “Even after its lakes and rivers disappeared, small amounts of water continued to move underground, creating protected environments that could have supported microscopic life.”


How long did Mars have habitable conditions for life? This is what a recent study published in the Journal of Geophysical Research – Planets hopes to address as a team of scientists from New York University Abu Dhabi investigated how surface and subsurface environments could have provided conditions suitable for life for greater periods than previously thought. This study has the potential to help scientists better understand past environments on Mars and what this could mean for finding life beyond Earth.

For the study, the researchers analyzed data from NASA’s Curiosity rover, which is currently exploring Gale Crater, a location of ancient water on Mars. The researchers compared data from wind-formed features called dunes, potential ancient groundwater and subsurface water, and analog studies in the United Arab Emirates. Dunes are widespread on Mars and have long helped researchers understand global weather patterns, specifically regarding dust transportation. In the end, the researchers found that dunes interacting with watery environments could be potential locations to search for life on Mars, specifically regarding how they transported water from the surface to the subsurface.

New Graphene Tech Powers Supercapacitors To Rival Traditional Batteries

Engineers have achieved a major milestone in the global effort to design energy storage systems that combine high speed with strong power output, opening new possibilities for electric vehicles, grid stabilization, and consumer electronics.

In a paper recently published in Nature Communications, the research team introduced a new type of carbon-based material that enables supercapacitors to store as much energy as traditional lead-acid batteries while delivering power at a much faster rate than conventional battery systems.

Robotics Company Builds Straight-Up Terminator

“I am kind of blown away that they can get motors to work in such an elegant way. I assumed it was soft body mechanics,” wrote another. “Wow.”

Iron made its first debut on Wednesday, when XPeng CEO He Xiaopeng introduced the unit as the “most human-like” bot on the market to date. Per Humanoids Daily, the robot features “dexterous hands” with 22 degrees of flexibility, a “human-like spine,” gender options, and a digital face.

According to He, the bot also contains the “first all-solid-state battery in the industry,” as opposed to the liquid electrolyte typically found in lithium-ion batteries. Solid-state batteries are considered the “holy grail” for electric vehicle development, a design choice He says will make the robots safer for home use.

New recharge-to-recycle reactor turns battery waste into new lithium feedstock

As global electric vehicle adoption accelerates, end-of-life battery packs are quickly becoming a major waste stream. Lithium is costly to mine and refine, and most current recycling methods are energy- and chemical-intensive, often producing lithium carbonate that must be further processed into lithium hydroxide for reuse.

How plastics grip metals at the atomic scale: Molecular insights pave way for better transportation materials

What makes some plastics stick to metal without any glue? Osaka Metropolitan University scientists have peered into the invisible adhesive zone that forms between certain plastics and metals—one atom at a time—to uncover how chemistry and molecular structure determine whether such bonds bend or break.

Their insights clarify metal–plastic bonding mechanisms and offer guidelines for designing durable, lightweight, and more sustainable hybrid materials for use in transportation.

Combining the strength of metal with the lightness and flexibility of plastic, polymer–metal hybrid structures are emerging as key elements for building lighter, more fuel-efficient vehicles. The technology relies on bonding metals with plastics directly, without adhesives. The success of these hybrids, however, hinges on how well the two materials stick together.

Microsoft Flight Simulator isn’t just for nerdy dads anymore: Boeing will start using its tech to train actual pilots

The most recent incarnation of Microsoft’s long-running flight simulator series is a genuine marvel, whether you fancy yourself an ace pilot or just want to crash spectacularly into the Eiffel Tower. Speaking more to the former instinct, Microsoft is teaming up with Boeing to put that high-fidelity simulation to work in a virtual training program for novice pilots.

As noted in a press release from Boeing, the Virtual Airplane Procedures Trainer was announced last Thursday at the European Aviation Training Summit in Portugal. The release notes the new program is “powered by Microsoft Azure and Microsoft Flight Simulator,” and is “designed to empower pilots and flight training teams with immersive, accessible and customizable tools that elevate pilot learning and readiness.”

Self-driving system makes key plastic ingredient using in-house generated H₂O₂

An eco-friendly system capable of producing propylene oxide (PO) without external electricity or sunlight has been developed. PO is a vital raw material used in manufacturing household items such as polyurethane for sofas and mattresses, as well as polyester for textiles and water bottles.

A research team led by Professors Ja Hun Kwak and Ji-Wook Jang from the School of Energy and Chemical Engineering at UNIST, in collaboration with Professor Sung June Cho of Chonnam National University, has successfully created a self-driven PO production system utilizing in-situ generated hydrogen peroxide (H₂O₂).

The research is published in Nature Communications.

Composite metal foam could lead to safer hazmat transportation

A new study finds that composite metal foam (CMF) can withstand tremendous force—enough to punch a hole in a railroad tank car—at much lower weight than solid steel. The finding raises the possibility of creating a safer generation of tanker cars for transporting hazardous materials.

The researchers have also developed a that can be used to determine what thickness of CMF is needed in order to provide the desired level of protection necessary for any given application. The paper, “Numerical Model and Experimental Validation of Composite Metal Foam in Protecting Carbon Steel Against Puncture,” is published in Advanced Engineering Materials.

“Railroad tank cars are responsible for transporting a wide range of hazardous materials, from acids and chemicals to petroleum and liquefied ,” says Afsaneh Rabiei, corresponding author of a paper on the work and a professor of mechanical and aerospace engineering at North Carolina State University.

/* */