Toggle light / dark theme

Nanoparticle–stem cell hybrids open a new horizon in bone regeneration

A research team in South Korea has successfully developed a novel technology that combines nanoparticles with stem cells to significantly improve 3D bone tissue regeneration. This advancement marks a step forward in the treatment of bone fractures and injuries, as well as in next-generation regenerative medicine.

The research is published in the journal ACS Biomaterials Science & Engineering.

Dr. Ki Young Kim and her team at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with Professor Laura Ha at Sunmoon University, have engineered a nanoparticle-stem cell hybrid, termed a nanobiohybrid by integrating mesoporous silica nanoparticles (mSiO₂ NPs) with human adipose-derived mesenchymal (hADMSCs). The resulting hybrid cells demonstrated markedly enhanced osteogenic (bone-forming) capability.

Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials

Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire body, meaning a high dose must be administered to ensure that the necessary amount reaches the thrombus. This can cause serious side effects, such as internal bleeding.

Since medicines are often only needed in specific areas of the body, has long been searching for a way to use microrobots to deliver pharmaceuticals to where they need to be: in the case of a stroke, directly to the stroke-related thrombus.

Now, a team of researchers at ETH Zurich has made major breakthroughs on several levels. They have published their findings in Science.

A Radical New Kind of Particle Accelerator Could Transform Science

A particle accelerator that produces intense X-rays could be squeezed into a device that fits on a table, my colleagues and I have found in a new research project.

The way that intense X-rays are currently produced is through a facility called a synchrotron light source. These are used to study materials, drug molecules, and biological tissues. Even the smallest existing synchrotrons, however, are about the size of a football stadium.

Our research, which has been accepted for publication in the journal Physical Review Letters, shows how tiny structures called carbon nanotubes and laser light could generate brilliant X-rays on a microchip. Although the device is still at the concept stage, the development has the potential to transform medicine, materials science, and other disciplines.

Water-based plasma forges novel alloy to turn CO₂ into useful chemicals

A new water-based plasma technique is opening fresh possibilities for carbon conversion.

Chinese researchers have created stable high-entropy alloy nanoparticles—containing five metals in nearly equal ratios—directly in solution, thereby overcoming long-standing challenges in nanoscale alloy synthesis.

These particles form a self-protecting, oxidized shell, delivering strong photothermal performance that utilizes visible and infrared light to drive carbon dioxide into carbon monoxide more efficiently than single-metal catalysts.

Particles that enhance mRNA delivery could reduce vaccine dosage and costs

New nanoparticles that enhance mRNA delivery could reduce vaccine dosage, costs, and possibly even side effects. “Our goal has been to try to make nanoparticles that can give you a safe and effective vaccine response but at a much lower dose,” Daniel Anderson says.


A new lipid nanoparticle could make mRNA vaccines more effective and potentially lower the cost per dose. New research suggests an mRNA influenza vaccine delivered with the new particle could generate the same immune response as mRNA delivered by standard nanoparticles, but at around 1/100 the dose.

Atomic Structure of Mn-Doped CoFe2O4 Nanoparticles for Metal–Air Battery Applications

We discuss the atomic structure of cobalt ferrite nanoparticles doped with Mn via an analysis based on combining atomic pair distribution functions with high energy X-ray diffraction and high-resolution transmission electron microscopy measurements. Cobalt ferrite nanoparticles are promising materials for metal–air battery applications. Cobalt ferrites, however, generally show poor electronic conductivity at ambient temperatures, which limits their bifunctional catalytic performance in oxygen electrocatalysis. Our study reveals how the introduction of Mn ions promotes the conductivity of the cobalt ferrite electrode.

Algorithms reveal how propane becomes propylene for everyday products

Countless everyday products, from plastic squeeze bottles to outdoor furniture, are derived by first turning propane into propylene.

A 2021 study in Science demonstrated that chemists could use tandem nanoscale catalysts to integrate multiple steps of the process into a single reaction—a way for companies to increase yield and save money. But it was unclear what was happening at the , making it difficult to apply the technique to other key industrial processes.

Researchers at the University of Rochester have developed algorithms that show the key atomic features driving the complex chemistry when the nanoscale catalysts turn propane into propylene.

Tabletop particle accelerator could transform medicine and materials science

A particle accelerator that produces intense X-rays could be squeezed into a device that fits on a table, my colleagues and I have found in a new research project.

The way that intense X-rays are currently produced is through a facility called a . These are used to study materials, drug molecules and biological tissues. Even the smallest existing synchrotrons, however, are about the size of a football stadium.

Our research, which is published in the journal Physical Review Letters, shows how tiny structures called carbon nanotubes and could generate brilliant X-rays on a microchip. Although the device is still at the concept stage, the development has the potential to transform medicine, and other disciplines.

Angstrom-level imaging and 2D surfaces allow real-time tracking and steering of DNA

Pictures of DNA often look very tidy—the strands of the double helix neatly wind around each other, making it seem like studying genetics should be relatively straightforward. In truth, these strands aren’t often so perfectly picturesque. They are constantly twisting, bending, and even being repaired by minuscule proteins. These are movements on the nanoscale, and capturing them for study is extremely challenging. Not only do they wriggle about, but the camera’s fidelity must be high enough to focus on the tiniest details.

Researchers from the University of Illinois Urbana-Champaign (U. of I.) have been working on resolving a grand challenge for , and more specifically, : how to take a high-resolution image of DNA to facilitate study.

Using a number of compute resources, including NCSA’s Delta, Aleksei Aksimentiev, a professor of physics at U. of I, and Dr. Kush Coshic, formerly a graduate research assistant in the Center for Biophysics and Quantitative Biology and the Beckman Institute for Advanced Science and Technology at U. of I., and currently a postdoctoral fellow at the Max Planck Institute of Biophysics, recently made significant contributions to solving this challenge. They did it by focusing on two specific problems: creating a “camera” that could capture the molecular movement of DNA, and by creating an environment in which they could predictably direct the movement of the DNA strands.

Nanorobots guide stem cells to become bone cells via precise pressure

For the first time, researchers at the Technical University of Munich (TUM) have succeeded in using nanorobots to stimulate stem cells with such precision that they are reliably transformed into bone cells. To achieve this, the robots exert external pressure on specific points in the cell wall. The new method offers opportunities for faster treatments in the future.

Prof. Berna Özkale Edelmann’s nanorobots consist of tiny gold rods and plastic chains. Several million of them are contained in a gel cushion measuring just 60 micrometers, together with a few . Powered and controlled by , the robots, which look like tiny balls, mechanically stimulate the cells by exerting pressure.

“We heat the gel locally and use our system to precisely determine the forces with which the nanorobots press on the cell—thereby stimulating it,” explains the professor of nano-and microrobotics at TUM. This mechanical stimulation triggers biochemical processes in the cell. Ion channels change their properties, and proteins are activated, including one that is particularly important for bone formation.

/* */