Blog

Archive for the ‘biological’ category

Aug 23, 2015

Computer scientists have found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs

Posted by in categories: computing, evolution, existential risks, robotics/AI

Computer scientists have found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs. Beyond implications for artificial intelligence, the research supports the idea that mass extinctions actually speed up evolution by unleashing new creativity in adaptations.

Photo credit: Joel Lehman.

Read more

Aug 20, 2015

Peto’s Paradox: Why Don’t Larger Animals Get Cancer More Often?

Posted by in categories: biotech/medical, evolution, genetics, life extension

If cancer is predominantly a random process, then why don’t organisms with thousands of times more cells suffer more from cancer? Large species like whales and elephants generally live longer, not shorter lives, so how are they protected against the threat of cancer?

While we have a great deal more to learn when it comes to cancer biology, the general belief is that it arises first from mutation. It’s becoming clear it’s actually an incredibly complicated process, requiring a range of variable factors such as mutation, epigenetic alteration and local environment change (like inflammation). While some students may have spent sleepless nights wondering how many mutated cells they contain after learning the fallibility of our replication mechanisms, the reality is that with such an error rate we should all be ridden with cancer in childhood — but we’re not. Our canine companions sadly often succumb around their 1st decade, but humans are actually comparatively good at dealing with cancer. We live a relatively long time in the mammal kingdom for our size and even in a modern environment, it’s predominantly an age-related disease.

While evolution may have honed replication accuracy, life itself requires ‘imperfection’ to evolve. We needed those occasional errors in germ cells to allow evolution. If keeping the odd error is either preferable or essentially not worth the energy tackling when you’re dealing with tens of trillions of cells, then clearly there is more to the story than mutation. In order to maintain a multi-cellular organism for a long enough period, considering that errors are essentially inevitable, other mechanisms must be in place to remove or quarantine problematic cells.

Read more

Aug 18, 2015

What Is Synthetic Biology?

Posted by in categories: bioengineering, evolution

Synthetic biology is radical and has huge potential to revolutionize multiple industries. The fact is biology has already worked out efficient ways of doing things, or has in place mechanisms we can adapt, so why reinvent anything if we can simply adapt what’s already here? Using billions of years of evolution makes logical sense, and that’s what synthetic biology builds on.

So here is a great video by Grist, explaining what synthetic biology is and what we might be able to do with it in the future.

Read more

Aug 12, 2015

Robot builds its own children, mimics evolution

Posted by in categories: evolution, robotics/AI

A robot mama built robot babies, taking what was best from her first generation to build better and more mobile bots. Yes, now’s a good time to panic.

Read more

Aug 4, 2015

A (Very) Brief History of Death

Posted by in categories: bionic, biotech/medical, cryonics, cyborgs, education, evolution, futurism, health, information science, life extension, science, transhumanism

“I am prepared to meet my Maker. Whether my Maker is prepared for the great ordeal of meeting me is another matter.” — Winston Churchill

Death still enjoys a steady paycheck, but being the Grim Reaper isn’t the cushy job that it used to be.

Jul 14, 2015

The ‘Indispensable Soma’ theory of ageing

Posted by in categories: evolution, health, life extension, science, transhumanism

OK. In scientific terms, it is only a ‘hypothesis’ — the reverse of the ‘Disposable Soma’ theory of ageing. Here how it goes.

For the past several decades, the Disposable Soma theory of ageing has been enjoying good publicity and a lively interest from both academics and the public alike. It stands up to scientific scrutiny, makes conceptual sense and fits well within an evolutionary framework of ageing. The theory basically suggests that, due to energy resource constraints, there is a trade-off between somatic cell and germ cell repair. As a result, germ cells are being repaired effectively and so the survival of the species is assured, at a cost of individual somatic (bodily) ageing and death. To put it very simply, we are disposable, we age and die because all the effective repair mechanisms have been diverted to our germ cell DNA in order to guarantee the survival of our species.

The theory accounts for many repair pathways and mechanisms converging upon the germ cell, and also for many of those mechanisms being driven away from somatic cell repair just to ensure germ cell survival. In the past two or three years however, it is increasingly being realised that this process is not unidirectional (from soma to germ), but it is bi-directional: under certain circumstances, somatic cells may initiate damage that affects germ cells, and also that germ cells may initiate repairs that benefit somatic cells!

I can’t even begin to describe how important this bi-directionality is. Taking this in a wider and more speculative sense, it is, in fact, the basis for the cure of ageing. The discovery that germ cells can (or are forced to) relinquish their repair priorities, and that resources can then be re-allocated for somatic repairs instead, means that we may be able to avoid age-related damage (because this would be repaired with greater fidelity) and, at the same time, avoid overpopulation (as our now damaged genetic material would be unsuitable for reproduction).

Continue reading “The ‘Indispensable Soma’ theory of ageing” »


Jul 6, 2015

Evolutionary Biologist Suggests Aliens Look Like Us

Posted by in categories: alien life, astronomy, cosmology, evolution, first contact, space

According to the reputable Australian astro-enthusiast journal, SkyNews, a leading biologist says that it is surprising we have not already discovered extra-terrestrials that look like us — given the growing number of Earth-like planets now discovered by astronomers.

Planet_moon
Simon Conway Morris, an evolutionary biologist suggests that aliens resembling humans must have evolved on other planets. He bases the claim on evidence that different species will independently develop similar features which means that life similar to that on Earth would also develop on equivalent planets.

The theory, known as convergence, says evolution is a predictable process which follows a rigid set of rules. Read the full story at Skynews

__________
Philip Raymond is Co-Chair of The Cryptocurrency Standards
Association [crypsa.org] and chief editor at AWildDuck.com

Jun 25, 2015

OS Fermentation Salon Series — By EcoArtTech

Posted by in categories: biological, chemistry, food, health

Ferment_Selfies_Three_SITE_900px

“OS FERMENTATION events have included installations, workshops, prints, and tastings. The installation includes digital prints created by custom electronics and software that allow microbes to take their own “selfies” and add image manipulation effects to their images based on the shifting pH levels, oxygen, and color values of the fermentation process.”

Read more

Jun 9, 2015

World’s first biolimb … By Akshat Rathi | Quartz

Posted by in categories: biological, biotech/medical, DNA, education, ethics, futurism, genetics, hacking, hardware, health

The idea is simple. First, they take an arm from a dead rat and put it through a process of decellularization using detergents. This leaves behind a white scaffold. The scaffold is key because no artificial reconstructions come close to replicating the intricacies of a natural one.

Read more

Jun 7, 2015

CRISPR, the disruptor — Heidi Ledford | Nature

Posted by in categories: biological, DNA, environmental

“Researchers are considering how CRISPR could or should be deployed on organisms in the wild. Much of the attention has focused on a method called gene drive, which can quickly sweep an edited gene through a population. The work is at an early stage, but such a technique could be used to wipe out disease-carrying mosquitoes or ticks, eliminate invasive plants or eradicate herbicide resistance in pigweed, which plagues some US farmers.” Read more

Page 1 of 1812345678Last