Blog

Archive for the ‘biological’ category

Jun 24, 2016

Watch The Universe is-Expanding Faster Than the Laws of Physics Can give details, New Measurements Reveal

Posted by in categories: evolution, particle physics, space

Physicists in the US presently made the most precise measurement ever made of the present rate of growth of the Universe, but there is a problem: our Universe is expanding 8 percent quicker than our present laws of physics can give details. Currently astronomers are looking over once more at their measurements and if turn out to be right, this latest measurement will automatically force us to redefine how dark substance and dark energy have been manipulating the evolution of the Universe for the past 13.8 billion years, and that can’t be done without changing or addition something in the typical model of particle Physics.

Jun 24, 2016

These microbes can live on pure electricity

Posted by in categories: biological, particle physics, space

It may seem like something from science fiction, but researchers have found a group of microorganisms that can live off of pure electricity, reports. All life uses electricity, but scientists long thought it impossible for a cell to directly consume and expel electrons. That’s because fatty cell membranes act as insulators, preventing the flow of electricity. Scientists have now found evidence that some cells can discharge electrons through specialized proteins in their membranes, and others can ingest electrons from an electrode by using an enzyme that creates hydrogen atoms. Still others might be able to directly consume electrons, though that research has yet to be published. The findings could help researchers understand how life thrives under a variety of conditions, and how it could exist on places like Mars.

Jun 23, 2016

How molecules can do statistics

Posted by in categories: bioengineering, biological, genetics

Mobile phones have become commonplace. Modern communication devices like mobile phones need to exchange huge amounts of information. However, what is hidden underneath the elegantly shaped plastic casings is quickly forgotten: Complex signal processors constantly fighting against noise and steadily adapting themselves to changing environment.

But noise and changing environmental conditions do not only affect electrical circuits. In synthetic biology scientists are facing similar problems. However, in synthetic biology a methodology to deal with noise does not exist yet. Prof. Mustafa Khammash and Christoph Zechner of the Department of Biosystems Science and Engineering have studied how conventional signal processors can be translated into biochemical processes — built and operated inside living cells.

A major limitation in engineering biological circuits is that host cells — even if they are genetically identical — are never the same. For instance, cell A might be in a different cell-cycle stage or have more ribosomes available than cell B. Therefore, the same synthetic circuit may behave very differently in each of these two cells. In extreme cases, only a small fraction of cells might show the correct behavior, while the remaining cells act unpredictably. This is referred to as context-dependency.

Jun 15, 2016

How Artificial Superintelligence Will Give Birth To Itself

Posted by in categories: biological, robotics/AI

There’s a saying among futurists that a human-equivalent artificial intelligence will be our last invention. After that, AIs will be capable of designing virtually anything on their own — including themselves. Here’s how a recursively self-improving AI could transform itself into a superintelligent machine.

When it comes to understanding the potential for artificial intelligence, it’s critical to understand that an AI might eventually be able to modify itself, and that these modifications could allow it to increase its intelligence extremely fast.

Once sophisticated enough, an AI will be able to engage in what’s called “recursive self-improvement.” As an AI becomes smarter and more capable, it will subsequently become better at the task of developing its internal cognitive functions. In turn, these modifications will kickstart a cascading series of improvements, each one making the AI smarter at the task of improving itself. It’s an advantage that we biological humans simply don’t have.

Continue reading “How Artificial Superintelligence Will Give Birth To Itself” »

Jun 15, 2016

Intelligence Agency Wants to Keep ‘Novel Organisms’ From Threatening Humans

Posted by in categories: biological, business

IARPA is hosting a Proposers’ Day for businesses in a couple weeks.

Jun 14, 2016

Scientists Say They Can Recreate Living Dinosaurs Within the Next 5 Years

Posted by in category: evolution

Get this: The renowned paleontologist who inspired ‘Jurassic Park’ is attempting to recreate dinosaurs by reversing the evolution of the modern-day chicken.

Jun 11, 2016

Biological networks can boost artificial intelligence

Posted by in categories: biological, neuroscience, robotics/AI

For robots; the bigger question where is the bigger ROI? Robots trying to be built to out do people; or is it better to enhance people? DARPA is more focused on enhancing people such as soldiers; and I agree with DARPA.


Understanding the hierarchical structure of biological networks like human brain — a network of neurons — could be useful in creating more complex, intelligent computational brains in the fields of artificial intelligence and robotics, says a study.

Like large businesses, many biological networks are hierarchically organised, such as gene, protein, neural, a…

Continue reading “Biological networks can boost artificial intelligence” »

Jun 10, 2016

Autonomous synthetic nanomotors powered by proteins and chemicals

Posted by in categories: biological, nanotechnology, robotics/AI

Researchers at the University of Manchester, UK have made the first autonomous chemically powered synthetic small-molecule motor. The new device, which is very much like the protein motors found in biological cells, might be used to design artificial molecular machines similar to those found in nature. Such machines could be important for applications such as synthetic muscles, nano- and micro-robots and advanced mechanical motors.

READ MORE ON IOP | NANOTECHWEB

Jun 9, 2016

Physicists confirm there’s a second layer of information hidden in our DNA

Posted by in categories: biotech/medical, evolution, physics

Theoretical physicists have confirmed that it’s not just the information coded into our DNA that shapes who we are — it’s also the way DNA folds itself that controls which genes are expressed inside our bodies.

That’s something biologists have known for years, and they’ve even been able to figure out some of the proteins responsible for folding up DNA. But now a group of physicists have been able to demonstrate for the first time through simulations how this hidden information controls our evolution.

Let’s back up for a second here, because although it’s not necessarily news to many scientists, this second level of DNA information might not be something you’re familiar with.

Continue reading “Physicists confirm there’s a second layer of information hidden in our DNA” »

Jun 9, 2016

Chemical reaction lights the way for tracking microRNA in living organisms

Posted by in categories: biological, genetics

The ability to track molecular events inside the cells of living organisms offers a powerful window into fundamental biological processes, but methods for visualizing RNA in vivo without interfering with cell processes have been elusive. Now, researchers have developed a light-induced chemical reaction that accomplishes this feat in live zebrafish embryos (ACS Cent. Sci. 2016, DOI: 10.1021/acscentsci.6b00054). It is the first technique for detecting specific strings of nucleic acids in live vertebrates that doesn’t require genetically modifying the organism. What’s more, it’s sensitive enough to visualize the expression of microRNAs, small noncoding RNAs that act as puppetmasters of gene expression.

To do the reaction, chemical biologist Nicolas Winssinger, biochemist Marcos Gonzalez-Gaitan, and their colleagues at the University of Geneva designed two nucleic acid probes that each complement and bind to adjacent halves of a target microRNA sequence. The researchers conjugated one probe to a ruthenium complex that absorbs visible light and the other to a fluorogenic rhodamine that lights up when its azide bonds are cleaved. When the probes attach to the target sequence, the two reagents come close enough to react. Shining a light on the sample activates the ruthenium which then reduces the azide in the rhodamine conjugate, releasing its fluorescence. The dependence on external light allows researchers to control when the reporting reaction happens, Winssinger explains.

The team first developed the system three years ago (Chem. 2013, DOI: 10.1002/chem.201300060) for use in cultured cells; here, they adapted it for use in just-fertilized zebrafish embryos. “That’s really not trivial,” says Winssinger. The probes had to be nontoxic, stable for a day or more, and powerful enough to work even after being diluted through cell division.

Continue reading “Chemical reaction lights the way for tracking microRNA in living organisms” »

Page 1 of 2712345678Last