Toggle light / dark theme

Overcoming symmetry limits in photovoltaics through surface engineering

A recent study carried out by researchers from EHU, the Materials Physics Center, nanoGUNE, and DIPC introduces a novel approach to solar energy conversion and spintronics. The work tackles a long-standing limitation in the bulk photovoltaic effect—the need for non-centrosymmetric crystals—by demonstrating that even perfectly symmetric materials can generate significant photocurrents through engineered surface electronic states. This discovery opens new pathways for designing efficient light-to-electricity conversion systems and ultrafast spintronic devices.

The work is published in the journal Physical Review Letters.

Conventional solar cells rely on carefully engineered interfaces, such as p–n junctions, to turn light into electricity. A more exotic mechanism—the bulk photovoltaic effect —can generate electrical current directly in a material without such junctions, but only if its crystal structure lacks inversion symmetry. This strict requirement has long restricted the search for practical materials.

Turning crystal flaws into quantum highways: A new route towards scalable solid-state qubits

Building large-scale quantum technologies requires reliable ways to connect individual quantum bits (qubits) without destroying their fragile quantum states. In a new theoretical study, published in npj Computational Materials, researchers show that crystal dislocations—line defects long regarded as imperfections—can instead serve as powerful building blocks for quantum interconnects.

Using advanced first-principles simulations, a team led by Prof. Maryam Ghazisaeidi at The Ohio State University and Prof. Giulia Galli at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and Chemistry Department demonstrated that nitrogen-vacancy (NV) centers in diamond, a leading solid-state qubit platform, can be attracted to dislocations and retain—and in some cases improve—their quantum properties when positioned near these line defects.

“Because dislocations form quasi-one-dimensional (1D) structures extending through a crystal, they provide a natural scaffold for arranging qubits into ordered arrays,” said co-first author Cunzhi Zhang, a UChicago PME staff scientist in the Galli Group.

Soft, 3D transistors could host living cells for bioelectronics

New research from the WISE group (Wearable, Intelligent, Soft Electronics) at The University of Hong Kong (HKU-WISE) has addressed a long-standing bioelectronic challenge: the development of soft, 3D transistors.

This work introduces a new approach to semiconductor device design with transformative potential for bioelectronics. It is published in Science.

Led by Professor Shiming Zhang from the Department of Electrical and Electronic Engineering, Faculty of Engineering, the research team included senior researchers who joined HKU-WISE from the University of Cambridge and the University of Chicago, together with HKU Ph.D. students and undergraduate participants—an international, inclusive, and dynamic research community.

Taming heat: Novel solution enables unprecedented control of heat conduction

Prof. Gal Shmuel of the Faculty of Mechanical Engineering at the Technion—Israel Institute of Technology has developed an innovative approach that enables precise control of heat conduction in ways that do not occur naturally.

The breakthrough could lead to new applications in energy harvesting and in protecting heat-sensitive devices. The research, conducted in collaboration with Prof. John R. Willis of the University of Cambridge, was published in Physical Review Letters.

The researchers’ approach is based on designing materials with asymmetric and nonuniform microstructures, inspired by similar methods previously developed for controlling light and sound—but never applied before to heat conduction. The challenge in adapting these ideas stems from the fact that light and sound propagate as waves, while heat spreads through a spontaneous process known as diffusion.

Programmable Macrophage Mimics for Inflammatory Meniscus Regeneration via Nanotherapy

JUST PUBLISHED: programmable macrophage mimics for inflammatory meniscus regeneration via nanotherapy

Click here to read the latest free, Open Access Article from Research.


The meniscus is a fibrocartilaginous tissue and organ in the human knee joint that serves critical functions, including load transmission, shock absorption, joint stability, and lubrication. Meniscal injuries are among the most common knee injuries, typically caused by acute trauma or age-related degeneration [13]. Minor meniscal injuries are usually treated with in situ arthroscopic procedures or conservative methods, whereas larger or more severe injuries often necessitate total meniscus replacement. Recent advances in materials science and manufacturing techniques have enabled transformative tissue-engineering strategies for meniscal therapy [4, 5]. Several stem cell types, including synovium-derived mesenchymal stem cells, bone-marrow-derived mesenchymal stem cells, and adipose-derived stem cells (ADSCs), have been investigated as candidate seed cells for meniscal regeneration and repair. Notably, ADSCs are clinically promising because of their ease of harvest, high inducibility, innate anti-inflammatory properties, and potential to promote fibrocartilage regeneration [68]. Our group has developed a series of decellularized matrix scaffolds for auricular, nasal, tracheal, and articular cartilage repair using 3-dimensional (3D) bioprinting techniques, successfully repairing meniscus defects and restoring physiological function [912]. However, current tissue-engineering strategies for meniscus defect repair commonly rely on a favorable regenerative microenvironment. Pathological conditions such as osteoarthritis (OA) [13 16], the most prevalent joint disorder, often create inflammatory environments that severely hinder meniscus regeneration [17 21]. Moreover, meniscal injury exacerbates the local inflammatory milieu, further impeding tissue healing and inevitably accelerating OA progression. Therefore, there is an urgent need to establish a cartilaginous immune microenvironment that first mitigates early-stage inflammation after meniscal injury and then sequentially promotes later-stage fibrocartilage regeneration [22 25].

Currently, targeted regulation using small-molecule drug injections is commonly employed to treat inflammatory conditions in sports medicine [26,27]. Most of these drugs exhibit broad-spectrum anti-inflammatory effects and inevitably cause varying degrees of side effects by activating nonspecific signaling pathways. Polyethyleneimine is a highly cationic polymer. It is widely used to modulate inflammation by adsorbing and removing negatively charged proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), via electrostatic interactions [28–31]. Notably, modifying polyethyleneimine into its branched form (branched polyethyleneimine [BPEI]) has been shown to improve cytocompatibility and enhance in vivo metabolic cycling.

Dr. Marco de Baar, Ph.D. — DIFFER & TU/e — How Plasma Control Will Make Fusion Power Possible

How Plasma Control Will Make Fusion Power Possible — Dr. Marco De Baar Ph.D. — Dutch Institute for Fundamental Energy Research (DIFFER) / TU Eindhoven.


Dr. Marco de Baar, Ph.D. is a full professor and Chair of Plasma Fusion Operation and Control at the Mechanical Engineering Faculty of Eindhoven University of Technology (TU/e — https://www.tue.nl/en/research/resear

In addition to his work at TU/e, Dr. de Baar is also head of fusion research at the Dutch Institute for Fundamental Energy Research (DIFFER — https://www.differ.nl/) located on the TU/e campus. As member of DIFFER’s management team, he has also served as the Dutch representative in the European fusion research consortium EUROfusion (https://euro-fusion.org/).

From 2004 to 2007, Dr. de Baar headed the operations department at JET (Joint European Torus), Europe’s largest fusion experiment to date, where he was responsible for the successful operation and development of the reactor. From 2007, he was deputy project leader in the international consortium that develops the upper port launcher. He is program-leader for the Magnetohydrodynamics stabilization work package in ITER-NL (International Thermonuclear Experimental Reactor — https://www.iter.org/).

Dr. de Baar’s main scientific interest is the control of nuclear fusion plasmas, with a focus on control of Magnetohydrodynamics modes (for plasma stability) and current density profile (for performance optimization). In his research program, all elements of the control loops are considered, including actuator and sensor design, and advanced control oriented modelling. He also has a keen interest in the operations and the remote maintainability of nuclear fusion reactors.

Modeling human embryo implantation in vitro

The new 3D model system looks to replicate the complex physiological properties and cellular composition of the endometrium. The model is built in a step-by-step process by bringing together the different components of endometrial tissue. The team isolated two essential cell types that form endometrial tissue – epithelial cells and stromal cells – from tissue donated by healthy people who had endometrial biopsies.

As well as the cell types, the researchers sought to recreate the structure of the womb lining. Information from donated endometrial tissue was used to identify the tissue components that give the womb lining its structure. The researchers were able to incorporate these components together with the stromal cells into a special type of gel to support the growth of the cells in a thick layer. On top of this, they added the epithelial cells, which spread out over the surface of the stromal cells.

Once assembled, this formed an advanced replica of the womb lining, matching a biopsy of endometrial tissue in terms of cellular architecture, and showing responses to hormone stimulation that indicate the engineered womb lining’s receptivity for embryo implantation.

The team tested their model using donated early-stage human embryos from IVF procedures, and found that the embryo – at this point a compact ball of cells – underwent the expected stages expected of adhesion and invasion into the endometrial scaffold. Following implantation, the embryos increased secretion of human chorionic gonadotropin (hCG), a biochemical marker used in pregnancy tests to confirm pregnancy, and other pregnancy-associated proteins.

Furthermore, the system supported post-implantation development of the embryo, enabling the analysis of embryo stages (12−14 days post fertilisation) that have been largely unexplored. The researchers observed that implanted embryos reached several developmental milestones, such as the appearance of specialist cell types in the embryo and also the establishment of precursor cell types important for the development of the placenta.

Using single cell analysis of implantation sites, the researchers were able to profile cells at the interface between the embryo and endometrium model, effectively listening in to the molecular communication between the tissues. Their results provide new insight into the complex interactions between the embryo and endometrial environment that underpin embryo development immediately after implantation.


Quantum calculations expose hidden chemistry of ice

When ultraviolet light hits ice—whether in Earth’s polar regions or on distant planets—it triggers a cascade of chemical reactions that have puzzled scientists for decades.

Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and collaborators at the Abdus Salam International Center for Theoretical Physics (ICTP) have used quantum mechanical simulations to reveal how tiny imperfections in ice’s crystal structure dramatically alter how ice absorbs and emits light. The findings, published in Proceedings of the National Academy of Sciences, pave the way for scientists to better understand what happens at a sub-atomic scale when ice melts, which has implications including improving predictions of the release of greenhouse gases from thawing permafrost.

“No one has been able to model what happens when UV light hits ice with this level of accuracy before,” said Giulia Galli, Liew Family Professor of Molecular Engineering and one of the senior authors of the new work. “Our paper provides an important starting point to understand the interaction of light with ice.”

/* */