Toggle light / dark theme

Scientists create a paper-thin light that glows like the sun

Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the researchers achieved light quality remarkably close to natural sunlight, improving color accuracy and reducing eye strain.

Engineered stem cells yield millions of tumor-fighting natural killer cells at reduced cost

Chinese researchers have developed a novel method to efficiently engineer natural killer (NK) cells for cancer immunotherapy. NK cells are central to early antiviral and anticancer defense—among other immune system roles—making them well-suited for cancer immunotherapy. For example, chimeric antigen receptor (CAR)-NK therapy involves adding a lab-built receptor (a CAR) to an NK cell, enabling it to recognize a specific antigen on a cancer cell and attack it.

However, conventional CAR-NK immunotherapies rely primarily on mature NK cells isolated from , such as peripheral blood or cord blood, which poses multiple challenges, including high heterogeneity, low engineering efficiency, high handling costs, and time-intensive processing.

Now a research team led by Prof. Wang Jinyong from the Institute of Zoology of the Chinese Academy of Sciences has developed a novel method to generate induced (that is, lab-generated) NK (iNK) cells and CAR-engineered iNK (CAR-iNK) cells from CD34+ and (HSPCs) derived from cord blood.

Strain engineering enhances spin readout in quantum technologies, study shows

Quantum defects are tiny imperfections in solid crystal lattices that can trap individual electrons and their “spin” (i.e., the internal angular momentum of particles). These defects are central to the functioning of various quantum technologies, including quantum sensors, computers and communication systems.

Reliably predicting and controlling the behavior of quantum defects is thus very important, as it could pave the way for the development of better performing quantum systems tailored for specific applications. A property closely linked to the dependability of quantum technologies is the so-called spin readout contrast, which essentially determines how clear it is to distinguish between two different spin states in a system.

Researchers at the Harbin Institute of Technology (Shenzhen), the HUN-REN Wigner Research Center for Physics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences and other institutes recently showed that strain engineering (i.e., stretching or compressing materials) could be used to control how quantum defects behave and enhance spin readout contrast in quantum systems.

Nanoparticle vaccine prevents multiple cancers and stops metastasis in mice

A study led by University of Massachusetts Amherst researchers demonstrates that their nanoparticle-based vaccine can effectively prevent melanoma, pancreatic and triple-negative breast cancer in mice. Not only did up to 88% of the vaccinated mice remain tumor-free (depending on the cancer), but the vaccine reduced—and in some cases completely prevented—the cancer’s spread.

The study is published in Cell Reports Medicine.

“By engineering these nanoparticles to activate the immune system via multi-pathway activation that combines with cancer-specific antigens, we can prevent with remarkable survival rates,” says Prabhani Atukorale, assistant professor of biomedical engineering in the Riccio College of Engineering at UMass Amherst and corresponding author on the paper.

MIT and Harvard Build “Invisible” Immune Cells That Obliterate Cancer

MIT and Harvard scientists have created engineered CAR-NK cells that can hide from the immune system and more effectively destroy cancer.

The cells are designed to suppress immune-rejection signals and enhance tumor-killing power. Tested in humanized mice, they wiped out cancer while avoiding dangerous immune reactions.

A major breakthrough in immune engineering.

Engineered CAR-NK cells could evade immune rejection and target cancer more effectively

One of the newest weapons that scientists have developed against cancer is a type of engineered immune cell known as CAR-NK (natural killer) cells. Similar to CAR-T cells, these cells can be programmed to attack cancer cells.

MIT and Harvard Medical School researchers have now come up with a new way to engineer CAR-NK cells that makes them much less likely to be rejected by the patient’s , which is a common drawback of this type of treatment.

The new advance may also make it easier to develop “off-the-shelf” CAR-NK cells that could be given to patients as soon as they are diagnosed. Traditional approaches to engineering CAR-NK or CAR-T cells usually take several weeks.

Flash Joule heating lights up lithium extraction from ores

A new one‑step, water‑, acid‑, and alkali‑free method for extracting high‑purity lithium from spodumene ore has the potential to transform critical metal processing and enhance renewable energy supply chains. The study is published in Science Advances.

As the demand for lithium continues to rise, particularly for use in , smartphones and power storage, current extraction methods are struggling to keep pace. Extracting lithium from is a lengthy process, and traditional methods that use heat and chemicals to extract lithium from rock produce significant amounts of harmful waste.

Researchers led by James Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering at Rice University, have developed a faster and cleaner method using flash Joule heating (FJH). This technique rapidly heats materials to thousands of degrees within milliseconds and works in conjunction with chlorine gas, exposing the rock to intense heat and chlorine gas, they can quickly convert spodumene ore into usable lithium.

Cryo-imaging gives deeper view of thick biological materials

Electron microscopy is an exceptional tool for peering deep into the structure of isolated molecules. But when it comes to imaging thicker biological samples to understand how those molecules function in their cellular environments, the technology gets a little murky.

Cornell researchers devised a new method, called tilt-corrected bright-field scanning transmission electron microscopy (tcBF-STEM), to image thick samples with higher contrast and a fivefold increase in efficiency.

The Sept. 23 publication of the findings, in Nature Methods, arrives two years after the death of co-author Lena Kourkoutis, M.S. ‘06, Ph.D. ‘09, associate professor in applied and in Cornell Engineering, whose work in cryo-electron microscopy drove much of the nearly 10-year effort.

Designing random nanofiber networks, optimized for strength and toughness

In nature, random fiber networks such as some of the tissues in the human body, are strong and tough with the ability to hold together but also stretch a lot before they fail. Studying this structural randomness—that nature seems to replicate so effortlessly—is extremely difficult in the lab and is even more difficult to accurately reproduce in engineering applications.

Recently, researchers at The Grainger College of Engineering, University of Illinois Urbana-Champaign and the Rensselaer Polytechnic Institute devised a method to repeatedly print random polymer nanofiber networks with desired characteristics and use to tune the random network characteristics for improved strength and toughness.

“This is a big leap in understanding how nanofiber networks behave,” said Ioannis Chasiotis, a professor in the Department of Aerospace Engineering. “Now, for the first time, we can reproduce randomness with desirable underlying structural parameters in the lab, and with the companion computer model, we can optimize the to find the network parameters, such as nanofiber density, that produce simultaneously higher network strength, stiffness and toughness.”

Supercritical fluids once thought uniform found to contain liquid clusters

A supercritical fluid refers to a state in which the temperature and pressure of a substance exceed its critical point, where no distinction exists between liquid and gas phases. Traditionally, it has been regarded as a single, uniform phase. However, a research team at POSTECH (Pohang University of Science and Technology) experimentally demonstrated nonequilibrium phase separation within supercritical fluids by observing nanometer-sized “liquid clusters” that persist for up to one hour.

The research team led by Professor Gunsu Yun from the Division of Advanced Nuclear Engineering and the Department of Physics at POSTECH, in collaboration with Dr. Jong Dae Jang’s group at the Korea Atomic Energy Research Institute (KAERI), Professor Min Young Ha at Kyung Hee University, and Dr. Changwoo Do’s team at Oak Ridge National Laboratory (ORNL) in the U.S., experimentally verified the existence of nano-clusters that exist separately in a liquid-like state within previously considered a uniform phases.

The experiment utilized the Small-Angle Neutron Scattering (SANS) instrument at Korea’s neutron research facility, HANARO.

/* */