Toggle light / dark theme

LIGO-Virgo-KAGRA detect most massive black hole merger to date

The LIGO-Virgo-KAGRA (LVK) Collaboration has detected the merger of the most massive black holes ever observed with gravitational waves using the LIGO observatories. The powerful merger produced a final black hole approximately 225 times the mass of our sun. The signal, designated GW231123, was detected during the fourth observing run of the LVK network on November 23, 2023.

LIGO, the Laser Interferometer Gravitational-wave Observatory, made history in 2015 when it made the first-ever direct detection of , ripples in space-time. In that case, the waves emanated from a black hole merger that resulted in a final black hole 62 times the mass of our sun. The signal was detected jointly by the twin detectors of LIGO, one located in Livingston, Louisiana, and the other in Hanford, Washington.

Since then, the LIGO team has teamed up with partners at the Virgo detector in Italy and KAGRA (Kamioka Gravitational Wave Detector) in Japan to form the LVK Collaboration. These detectors have collectively observed more than 200 in their fourth run, and about 300 in total since the start of the first run in 2015.

“This AI Outperformed Human Scientists”: Tasked With Reinventing Gravitational Wave Detectors, It Designed 50 Revolutionary Models That Could Change Everything

IN A NUTSHELL 🚀 Researchers have developed an AI program named Urania that designs more effective gravitational wave detectors. 🌌 These new detectors could significantly enhance our ability to observe distant cosmic events, including black hole mergers and early universe phenomena. 🔍 The AI-designed detectors cover a wider frequency range, potentially increasing the universe’s observable

Record financing for Proxima Fusion

The Munich-based start-up Proxima Fusion, a spin-out from the Max Planck Institute for Plasma Physics, has raised €130 million in capital. The company plans to use the funds to finance the development of the world’s first stellarator-based fusion power plant, which is scheduled to be built in the 2030s. The investment represents the largest private financing round in the field of fusion energy in Europe to date. Proxima Fusion now has a total of more than €185 million in public and private funding at its disposal.

What Happens After Superintelligence? (with Anders Sandberg)

Anders Sandberg joins me to discuss superintelligence and its profound implications for human psychology, markets, and governance. We talk about physical bottlenecks, tensions between the technosphere and the biosphere, and the long-term cultural and physical forces shaping civilization. We conclude with Sandberg explaining the difficulties of designing reliable AI systems amidst rapid change and coordination risks.

Learn more about Anders’s work here: https://mimircenter.org/anders-sandberg.

Timestamps:
00:00:00 Preview and intro.
00:04:20 2030 superintelligence scenario.
00:11:55 Status, post-scarcity, and reshaping human psychology.
00:16:00 Physical limits: energy, datacenter, and waste-heat bottlenecks.
00:23:48 Technosphere vs biosphere.
00:28:42 Culture and physics as long-run drivers of civilization.
00:40:38 How superintelligence could upend markets and governments.
00:50:01 State inertia: why governments lag behind companies.
00:59:06 Value lock-in, censorship, and model alignment.
01:08:32 Emergent AI ecosystems and coordination-failure risks.
01:19:34 Predictability vs reliability: designing safe systems.
01:30:32 Crossing the reliability threshold.
01:38:25 Personal reflections on accelerating change.

Physicists take step toward a holy grail for electron spins

For decades, ferromagnetic materials have driven technologies like magnetic hard drives, magnetic random access memories and oscillators. But antiferromagnetic materials, if only they could be harnessed, hold out even greater promise: ultra-fast information transfer and communications at much higher frequencies—a “holy grail” for physicists.

Scientists provide clear observation of spin and density modes in a two-component fluid of light

Recent physics studies have found that light can sometimes flow in unexpected ways, behaving like a so-called “superfluid.” Superfluids, such as ultracold atomic gases or helium-4 below specific temperatures, are phases of matter characterized by flowing behavior with zero viscosity (i.e., with no resistance).

Physicists observe image rotation in plasma

Light sometimes appears to be “dragged” by the motion of the medium through which it is traveling. This phenomenon, referred to as “light dragging,” is typically imperceptible when light is traveling in most widely available materials, as the movement is significantly slower than the speed of light. So far, it has thus proved difficult to observe in experimental settings.

Researchers at the University of Toulouse, University of California-Los Angeles (UCLA), University of Paris-Saclay and Princeton University recently observed a specific type of dragging known as image rotation in a plasma-based system.

Their observation, outlined in a paper published in Physical Review Letters, was made using magnetohydrodynamic (MHD) that propagate in a magnetized plasma, known as Alfvén waves.

Rethinking the Anomalous Hall Effect: A Symmetry Revolution

A new symmetry-breaking scenario provides a comprehensive description of magnetic behavior associated with the anomalous Hall effect.

In 1879 Edwin Hall discovered that a flat conductor carrying current, when placed in a magnetic field, will develop a transverse voltage caused by the deflection of charge carriers. Two years later he discovered that the same effect arises in ferromagnets even without an applied magnetic field. Dubbed the anomalous Hall effect (AHE), that phenomenon, alongside the ordinary Hall effect, not only catalyzed the rise of semiconductor physics and solid-state electronics but also laid the groundwork for a revolutionary convergence of topology and condensed-matter physics a century after Hall’s discoveries. Recent experiments, however, have uncovered behavior that cannot be explained with current theories for the AHE.