Toggle light / dark theme

From Sci-Fi to Reality: New Breakthrough Could Bring Holograms to Your Phone

New research from the University of St Andrews is advancing holographic technology, with potential applications in smart devices, communication, gaming, and entertainment. In a paper published in the journal Light, Science and Application, physicists from the School of Physics and Astronomy reported the creation of a new optoelectronic device that combines Holographic Metasurfaces (HMs) with Organic Light-Emitting Diodes (OLEDs).

Until now, holograms have typically been generated using lasers. The St Andrews team, however, demonstrated that pairing OLEDs with HMs provides a more compact and straightforward method. This approach is not only easier to implement but also less expensive, addressing one of the key challenges that has limited wider use of holographic technology.

OLEDs are thin-film devices already common in mobile phone displays and some televisions, where they create colored pixels. Because they are flat and emit light across their surface, OLEDs are also promising for emerging fields such as optical wireless communication, biophotonics, and sensing. Their versatility and ability to integrate with other components make them well-suited for developing miniaturized, light-based systems.

New quantum sensors can withstand extreme pressure

The world of quantum physics is already mysterious, but what happens when that strange realm of subatomic particles is put under immense pressure? Observing quantum effects under pressure has proven difficult for a simple reason: Designing sensors that can withstand extreme forces is challenging.

In a significant advance, a team led by physicists at WashU has created in an unbreakable sheet of crystallized . The sensors can measure stress and magnetism in materials under pressure that exceeds 30,000 times the pressure of the atmosphere.

“We’re the first ones to develop this sort of high-pressure sensor,” said Chong Zu, an assistant professor of physics in Arts & Sciences and a member of Washington University in St. Louis’ Center for Quantum Leaps. “It could have a wide range of applications in fields ranging from quantum technology, , to astronomy and geology.”

Synthetic magnetic fields steer light on a chip for faster communications

Electrons in a magnetic field can display striking behaviors, from the formation of discrete energy levels to the quantum Hall effect. These discoveries have shaped our understanding of quantum materials and topological phases of matter. Light, however, is made of neutral particles and does not naturally respond to magnetic fields in the same way. This has limited the ability of researchers to reproduce such effects in optical systems, particularly at the high frequencies used in modern communications.

To address this challenge, researchers from Shanghai Jiao Tong University and Sun Yat-Sen University have developed a method for generating pseudomagnetic fields—synthetic fields that mimic the influence of real magnetic fields—inside nanostructured materials known as photonic crystals.

Unlike previous demonstrations, which focused on specific effects such as photonic Landau levels, the new approach allows arbitrary control of how light flows within the material. Their research is published in Advanced Photonics.

Atomic-level engineering enables new alloys that won’t break in extreme cold

Navigating the extreme cold of deep space or handling super-chilled liquid fuels here on Earth requires materials that won’t break. Most metals become brittle and fracture at such low temperatures. However, new research is pioneering an approach to build metal structures atom by atom to create tough and durable alloys that can withstand such harsh environments.

Traditional strengthening approaches are often not good enough for these applications. For example, a common heat treatment technique called precipitation hardening strengthens metals by creating tiny hard particles within their structure. But in , the materials can lose their ductility (the ability to bend, stretch or be pulled into a new shape without breaking) and fracture suddenly.

A study published in the journal Nature describes a new way to design so they stay strong and tough even at super low temperatures. The big idea is to create an alloy with two different types of perfectly arranged atomic structures inside it. These structures are called subnanoscale short-range ordering (SRO), which are tiny islands of organized atoms and nanoscale long-range ordering (NLRO), which are slightly larger.

Astrophysicists Zero In on Source of Strange Gamma-Ray Signals

Millisecond pulsar binaries may produce the excess 511 keV photons seen in the galaxy. These systems could expose hidden pulsars and even exoplanets. Many astrophysicists devote their work to tracing the origins of photons, since certain types are closely linked to specific cosmic processes. Iden

Mysterious “Soot Planets” May Be Hiding in Plain Sight Among the Stars

Some planets may be soot-rich rather than water-based. Atmosphere studies will be key to understanding their true nature. Astronomers generally consider water worlds to be among the most common types of planets in our galaxy, largely because of their low densities and the abundance of water ice b

/* */