Blog

Archive for the ‘nuclear energy’ category

Jan 20, 2017

China, already dominant in supercomputers, shoots for an exascale prototype in 2017

Posted by in categories: information science, nuclear energy, robotics/AI, supercomputing

Back in June, China debuted the world’s fastest supercomputer, the Sunway TaihuLight (pictured), with a Linpack benchmark result of 93 petaflop/s. That machine contains 40,960 locally developed ShenWei processors, each with 260 cores and roughly comparable with Intel’s Knight’s Landing Xeon Phi CPU. China also developed a 136GB/sec memory controller and custom interconnect that delivers 16GB/sec of peak bandwidth between nodes.

Now China is working on a prototype exascale (1,000-petaflop) system that it aims to complete by the end of this year, according to state media. An exascale computer is capable of a quintillion calculations per second, and could deliver vast dividends in deep learning and big data across a variety of disciplines as varied as nuclear test research, code breaking, and weather forecasting.

“A complete computing system of the exascale supercomputer and its applications can only be expected in 2020, and will be 200 times more powerful than the country’s first petaflop computer Tianhe-1, recognized as the world’s fastest in 2010,” said Zhang Ting, an application engineer at Tianjin’s National Super Computer Center, to Xinhua news agency (via AFP).

Continue reading “China, already dominant in supercomputers, shoots for an exascale prototype in 2017” »

Dec 25, 2016

Imperial College of London makes world’s most heat resistant material at 4232 kelvin

Posted by in categories: nuclear energy, space, transportation

Researchers have discovered that tantalum carbide and hafnium carbide materials can withstand scorching temperatures of nearly 4000 degrees Celsius.

Being able to withstand temperatures of nearly 4000°C could pave the way for both materials to be used in ever more extreme environments, such as in heat resistant shielding for the next generation of hypersonic space vehicles.

Tantalum carbide (TaC) and hafnium carbide (HfC) are refractory ceramics, meaning they are extraordinarily resistant to heat. Their ability to withstand extremely harsh environments means that refractory ceramics could be used in thermal protection systems on high-speed vehicles and as fuel cladding in the super-heated environments of nuclear reactors. However, there hasn’t been the technology available to test the melting point of TaC and HfC in the lab to determine how truly extreme an environment they could function in.

Continue reading “Imperial College of London makes world’s most heat resistant material at 4232 kelvin” »

Dec 14, 2016

Powering the World With Nuclear

Posted by in category: nuclear energy

Transatomic believes they’ve figured out a safe, scalable, cost-effective way to power the world with nuclear.

Read more

Dec 6, 2016

Germany’s Wildly Complex Fusion Reactor Is Actually Working

Posted by in category: nuclear energy

The Wendelstein 7-X reactor, which uses a complex design called a stellerator, is performing just like it was predicted to.

Read more

Dec 6, 2016

Tests confirm Germany’s massive nuclear fusion machine really works

Posted by in category: nuclear energy

Last year, scientists started up a new type of massive nuclear fusion reactor for the first time, known as a stellarator.

Researchers at the Max Planck Institute in Greifswald, Germany, injected a tiny amount of hydrogen and heated it until it became plasma, effectively mimicking conditions inside the sun.

Continue reading “Tests confirm Germany’s massive nuclear fusion machine really works” »

Dec 6, 2016

Hawaii among top states in U.S. for hydrogen fuel cell projects

Posted by in categories: nuclear energy, transportation

The report highlighted key programs and policies in the state including the state Legislature authorizing $1.25 million in bonds to design the refueling infrastructure for the Department of Transportation airport shuttle bus project.

A fuel cell is an electrochemical device that uses hydrogen and oxygen from the air to produce electricity, with water and heat as its by-products. Hydrogen can come from fossil fuels such as natural gas or propane or renewable fuels including gas from an anaerobic digester or landfill. Hydrogen can also be produced by water electrolysis, which can be powered by electricity from renewables such as solar or wind or from nuclear energy and the grid.

Other top states for hydrogen and fuel cells include California, Connecticut and New York.

Continue reading “Hawaii among top states in U.S. for hydrogen fuel cell projects” »

Nov 29, 2016

Diamond Batteries Made of Nuclear Waste Can Generate Power For Thousands of Years

Posted by in categories: biotech/medical, nuclear energy, satellites, sustainability

In Brief

  • Scientist have developed an ingenious means of converting nuclear power plant waste (76,430 metric tons in the US alone) into sustainable diamond batteries.
  • These long-lasting batteries could be a clean and safe way to power spacecraft, satellites, and even medical devices.

Read more

Nov 28, 2016

Cold Fusion Lives: Experiments Create Energy When None Should Exist

Posted by in categories: engineering, nuclear energy

The field, now called low-energy nuclear reactions, may have legit results—or be stubborn junk science.

Read more

Nov 27, 2016

‘Diamond-age’ of power generation as nuclear batteries developed

Posted by in categories: nuclear energy, physics

New technology has been developed that uses nuclear waste to generate electricity in a nuclear-powered battery. A team of physicists and chemists from the University of Bristol have grown a man-made diamond that, when placed in a radioactive field, is able to generate a small electrical current.

Read more

Nov 22, 2016

Countries around the world are pouring billions of dollars into France’s revolutionary nuclear fusion reactor

Posted by in category: nuclear energy

This would forever change our world.

Read more

Page 1 of 1212345678Last