Blog

Archive for the ‘nuclear energy’ category

Mar 25, 2017

Liquid energy storage system gets the “MOST” out of the Sun

Posted by in categories: nuclear energy, solar power, sustainability

Solar power is potentially the greatest single energy source outside of controlled nuclear fusion, but the Sun is literally a fair weather source that relies on daytime and clear skies. To make solar energy a reliable, 24-hour source of energy, a team of scientists at Sweden’s Chalmers University of Technology in Gothenburg is developing a liquid energy storage medium that can not only release energy from the Sun on demand, but is also transportable.

The Chalmers team has been working on variants of its system, called a MOlecular Solar Thermal (MOST), for over six years, with a conceptual demonstration in 2013. It differs from other attempts to store solar energy in things like heated salts and reversing exothermic reactions in that the MOST system stores the energy directly in the bonds of an organic chemical.

Join more than 500 New Atlas Plus subscribers who read our newsletter and website without ads.

Continue reading “Liquid energy storage system gets the ‘MOST’ out of the Sun” »

Mar 6, 2017

How To Build A Home Fusion Reactor

Posted by in categories: nuclear energy, physics

The tale of a teen physics prodigy.

Read more

Mar 5, 2017

New path suggested for nuclear fusion

Posted by in categories: nuclear energy, particle physics, quantum physics

Controlled nuclear fusion has been a holy grail for physicists who seek an endless supply of clean energy. Scientists at Rice University, the University of Illinois at Urbana-Champaign and the University of Chile offered a glimpse into a possible new path toward that goal.

Their report on quantum-controlled fusion puts forth the notion that rather than heating atoms to temperatures found inside the sun or smashing them in a collider, it might be possible to nudge them close enough to fuse by using shaped laser pulses: ultrashort, tuned bursts of coherent light.

Authors Peter Wolynes of Rice, Martin Gruebele of Illinois and Illinois alumnus Eduardo Berrios of Chile simulated reactions in two dimensions that, if extrapolated to three, might just produce energy efficiently from deuterium and tritium or other elements.

Continue reading “New path suggested for nuclear fusion” »

Feb 21, 2017

We’re One Step Closer to Pulling Nuclear Fuel Straight Out of the Ocean

Posted by in category: nuclear energy

Karl Schab


Pulling uranium out of seawater could be a cost-effective way to source nuclear fuel, scientists have found, and the technique could pave the way for coastal countries to switch to nuclear power.

With the International Atomic Energy Agency currently predicting an increase of up to 68 percent in nuclear power production over the next 15 years, finding a new, more environmentally friendly source of uranium — the most critical ingredient in nuclear power — could give this alternative to fossil fuels a boost.

Continue reading “We’re One Step Closer to Pulling Nuclear Fuel Straight Out of the Ocean” »

Feb 14, 2017

Nuclear Reactors to Power Space Exploration

Posted by in categories: nuclear energy, solar power, space travel, sustainability

For the past five decades—from the Apollo-era lunar science experiments to the Mars Curiosity and the New Horizons missions—Pu-238 Radioisotope Thermal Generators (RTG) have served as a power source. While some of the NASA’s forays will continue to rely on these RTGs, others will require larger power sources to enable human space and planetary exploration and establish reliable high bandwidth deep-space communications. Solar power cannot handle this goal. A larger nuclear-based power source is required.

In a recent Washington Post article, Jeff Bezos, founder of amazon.com and creator of Blue Origin space project said, “I think NASA should work on a space-rated nuclear reactor. If you had a nuclear reactor in space—especially if you want to go anywhere beyond Mars­—you really need nuclear power. Solar power just gets progressively difficult as you get further way from the sun. And that’s a completely doable thing to have a safe, space-qualified nuclear reactor.”

Calls for space nuclear power are not new. In fact, numerous reactor concepts have been proposed in the past. Their development is often dampened by the perception that nuclear is too hard, takes too long and costs too much.

Continue reading “Nuclear Reactors to Power Space Exploration” »

Feb 6, 2017

This German fusion reactor could be the future of clean energy

Posted by in categories: futurism, nuclear energy

Read more

Feb 2, 2017

Scientists Have a Plan to Replace Fossil Fuels With Nuclear Fusion by 2030

Posted by in categories: nuclear energy, particle physics

Nuclear fusion is premised on building technology that would replicate the reaction that naturally powers our Sun — two light atoms, in this case, hydrogen, are fused together under extreme temperatures to produce another element, helium.

The process would release vast amounts of clean energy drawn from an almost limitless fuel source, with nearly zero carbon emissions.

However, it has yet to be done on a scale that would make it usable. Canadian scientists are hoping to change that, announcing plans to harness and develop nuclear fusion technology so they can deliver a working nuclear fusion plant prototype by 2030.

Continue reading “Scientists Have a Plan to Replace Fossil Fuels With Nuclear Fusion by 2030” »

Feb 1, 2017

Whoosh! Swish! Meet Bat Bot, the new flying batlike drone

Posted by in categories: drones, nuclear energy, robotics/AI

WASHINGTON (AP) — Holy drone, Batman! Mechanical masterminds have spawned the Bat Bot, a soaring, sweeping and diving robot that may eventually fly circles around other drones.

Because it mimics the unique and more flexible way bats fly, this 3-ounce prototype could do a better and safer job getting into disaster sites and scoping out construction zones than bulky drones with spinning rotors, said the three authors of a study released Wednesday in the journal Science Robotics. For example, it would have been ideal for going inside the damaged Fukushima nuclear plant in Japan, said study co-author Seth Hutchinson, an engineering professor at the University of Illinois.

The bat robot flaps its wings for better aerial maneuvers, glides to save energy and dive bombs when needed. Eventually, the researchers hope to have it perch upside down like the real thing, but that will have to wait for the robot’s sequel.

Continue reading “Whoosh! Swish! Meet Bat Bot, the new flying batlike drone” »

Jan 28, 2017

Hydraulic muscle makes for tougher, stronger disaster-site robots

Posted by in categories: nuclear energy, robotics/AI, transportation

The idea of using robots as the go-to for handling disaster situations isn’t new, but part of the problem has been how to build robots light enough to move about easily, yet are strong enough and tough enough to handle things like a smashed up nuclear reactor. As part of the answer, the Tokyo Institute of Technology and Bridgestone Tires have partnered to develop a new hydraulic robotic muscle that is lightweight, yet is five to ten times as strong as conventional electric motors and much more durable.

The locations in disaster areas where the responders are needed most urgently are often the ones that are the hardest to get to, precisely because they’ve been hit so hard. The 2011 Fukushima nuclear disaster is a prime example. Despite the damage done to the nuclear power plant by the sea wave that struck it, the subsequent explosion and meltdown could have been avoided had emergency workers been able to reach it with the right equipment in time to make repairs and re-power the cooling systems.

Continue reading “Hydraulic muscle makes for tougher, stronger disaster-site robots” »

Jan 22, 2017

‘Miniature’, Modular Nuclear Power Plants Could Be Rolled Out in the US

Posted by in categories: habitats, nuclear energy, transportation

The future of nuclear power might look very different than we thought, with a US-based company presenting plans for miniature, modular nuclear power plants that are so small, they can fit on the back of a truck.

NuScale Power, the company behind the power plants, says each modular device is completely self-contained, and capable of producing 50-megawatts of electricity — enough to power thousands of homes.

The power plants stand 29.7 metres tall, so aren’t really that ‘miniature’, except relative to an acutal nuclear power plant. They also haven’t been tested as yet, so we need to reserve our excitment for when we can actually see these things in action.

Continue reading “‘Miniature’, Modular Nuclear Power Plants Could Be Rolled Out in the US” »

Page 1 of 1212345678Last