Blog

Archive for the ‘sustainability’ category

Aug 26, 2016

Cheap and Useful 3D Printed Electronics

Posted by in categories: 3D printing, mobile phones, solar power, sustainability

Nice.


Shopping trends change from time to time while consumers continue to search for more affordable products with better functionality and specs. Researchers and developers around the world continue to improve company products while lessening the cost of producing these materials.

Gadgets like smartphones, LED lights, tablets and solar cells are already part of the mainstream, and it is not going to change anytime soon. Companies that are involved in this industry must always keep a competitive edge against other manufacturers.

Continue reading “Cheap and Useful 3D Printed Electronics” »

Aug 26, 2016

Robots Inherit the Farm

Posted by in categories: employment, food, robotics/AI, sustainability

In the US during the early 2000s there was an old political term for low skilled jobs, politicians called these jobs “the jobs that no one in America wanted.” Well, we now can start seeing the slogan by politicians as “the jobs that Robots can do for free.”


The focus of automation in farming has shifted from assisting humans to replacing them.

More

Continue reading “Robots Inherit the Farm” »

Aug 25, 2016

Scientists solve puzzle of converting gaseous carbon dioxide to fuel

Posted by in categories: climatology, energy, existential risks, sustainability

Every year, humans advance climate change and global warming — and quite likely our own eventual extinction — by injecting about 30 billion tonnes of carbon dioxide into the atmosphere.

A team of scientists from the University of Toronto (U of T) believes they’ve found a way to convert all these emissions into energy-rich fuel in a carbon-neutral cycle that uses a very abundant natural resource: silicon. Silicon, readily available in sand, is the seventh most-abundant element in the universe and the second most-abundant element in the earth’s crust.

The idea of converting to energy isn’t new: there’s been a global race to discover a material that can efficiently convert sunlight, carbon dioxide and water or hydrogen to fuel for decades. However, the of carbon dioxide has made it difficult to find a practical solution.

Aug 23, 2016

NASA Invests in Innovative Concepts, Including Electronic-recycling Microbes

Posted by in categories: biological, internet, sustainability

Aug 22, 2016

HKUST Develops Tiny Lasers that Opens New Era for Light-based Computing

Posted by in categories: computing, engineering, physics, solar power, sustainability

Congrats Hong Kong Univ.


Researchers at The Hong Kong University of Science and Technology (HKUST) have fabricated microscopically-small lasers directly on silicon, enabling the future-generation microprocessors to run faster and less power-hungry – a significant step towards light-based computing.

The innovation, made by Prof Kei-may Lau, Fang Professor of Engineering and Chair Professor of the Department of Electronic and Computer Engineering, in collaboration with the University of California, Santa Barbara; Sandia National Laboratories and Harvard University, marks a major breakthrough for the semiconductor industry and well beyond.

Continue reading “HKUST Develops Tiny Lasers that Opens New Era for Light-based Computing” »

Aug 22, 2016

5 Reasons To Farm In Low-Earth Orbit

Posted by in categories: food, habitats, space travel, sustainability

Large Earth-orbiting greenhouses will someday likely be as commonplace as peanut acreage on Georgia’s coastal plains.


Low-Earth orbit (LEO) would hardly appear to be the best place to take up farming. But both NASA and the burgeoning commercial space industry are already planning for a time when in addition to on-orbit space hotels and new research stations, there will also be Earth-orbiting greenhouses. Such structures will provide a horn of plenty for growing numbers of LEO residents and astronauts venturing beyond Earth orbit to the Moon, Mars or even the Main Asteroid Belt.

The initial case for LEO agriculture would be to feed a growing population of space-dwellers — either using a greenhouse that remained permanently attached to the LEO habitat, or a greenhouse that was free-flying and uncrewed.

Continue reading “5 Reasons To Farm In Low-Earth Orbit” »

Aug 22, 2016

Artificial Intelligence could help eradicate global poverty

Posted by in categories: computing, information science, robotics/AI, sustainability

Another spin on AI in how it eradicates poverty; hmmm.


Eradicating extreme poverty, measured as people living on less than $1.25 US a day, by 2030 is among the sustainable development goals adopted by United Nations member states last year.

A team of computer scientists and satellite experts created a self-updating world map to locate poverty, said Marshall Burke, assistant professor in Stanford’s Department of Earth System Science.

Continue reading “Artificial Intelligence could help eradicate global poverty” »

Aug 22, 2016

A Robot Army To Build Solar Panels (On The Moon)

Posted by in categories: education, robotics/AI, solar power, space, sustainability

As the global headcount nears 8 billion, our thirst for kilowatts is growing by the minute. How will we keep the lights on without overheating the planet in fossil fuel exhaust? Alternative energy is the obvious choice, but scaling up is hard. It would take an area the size of Nevada covered in solar panels to get enough energy to power the planet, says Justin Lewis-Weber, “and to me, that’s just not feasible.” This past March, Lewis-Weber, a then-high school senior in California, came up with a radical plan: self-replicating solar panels—on the moon.

Here’s the gist: When solar panels are orbiting Earth, they enjoy 24 hours of unfiltered sunshine every day, upping their productivity. Once out there, they could convert that solar radiation into electricity (just as existing solar panels do) and then into microwave beams (using the same principle as your kitchen appliance). Those microwaves then get beamed back to Earth, where receivers convert them back into electricity to power the grid. Simple! Except that Lewis-Weber estimates that building and launching thousands of pounds of solar panels and other equipment into space will be outrageously expensive, in the range of hundreds of trillions of dollars.

Instead, he suggested, why not make them on the moon? Land a single robot on the lunar surface, and then program it to mine raw materials, construct solar panels, and (here’s the fun part) make a copy of itself. The process would repeat until an army of self-replicating lunar robot slaves has churned out thousands of solar panels for its power- hungry masters.

Continue reading “A Robot Army To Build Solar Panels (On The Moon)” »

Aug 22, 2016

New Lighter, Tougher, and Bendable Concrete Aims to Revolutionize Roads

Posted by in categories: materials, sustainability

Scientists in Singapore have created a new type of concrete that bends, but is more durable and sustainable than the typical concrete.

Scientists at Nanyang Technological University (NTU)-JTC Industrial Infrastructure Innovation Center have created a new type of concrete that is flexible and more durable than regular concrete. They call it ConFlexPave.

According to its inventors, ConFlexPave can greatly reduce the weight and thickness of precast pavement slabs, making them lighter and easier to transport and install — thus, halving the time needed for road work and new pavement. Also, because it is more sustainable, it requires less maintenance compared to conventional concrete.

Continue reading “New Lighter, Tougher, and Bendable Concrete Aims to Revolutionize Roads” »

Aug 22, 2016

Uber Debuts Its First Fleet of Driverless Cars in Pittsburgh

Posted by in categories: business, mobile phones, robotics/AI, sustainability, transportation

Starting later this month, Uber will allow customers in downtown Pittsburgh to summon self-driving cars from their phones, crossing an important milestone that no automotive or technology company has yet achieved. Google, widely regarded as the leader in the field, has been testing its fleet for several years, and Tesla Motors offers Autopilot, essentially a souped-up cruise control that drives the car on the highway. Earlier this week, Ford announced plans for an autonomous ride-sharing service. But none of these companies has yet brought a self-driving car-sharing service to market.

Uber’s Pittsburgh fleet, which will be supervised by humans in the driver’s seat for the time being, consists of specially modified Volvo XC90 sport-utility vehicles outfitted with dozens of sensors that use cameras, lasers, radar, and GPS receivers. Volvo Cars has so far delivered a handful of vehicles out of a total of 100 due by the end of the year. The two companies signed a pact earlier this year to spend $300 million to develop a fully autonomous car that will be ready for the road by 2021.

The Volvo deal isn’t exclusive; Uber plans to partner with other automakers as it races to recruit more engineers. In July the company reached an agreement to buy Otto, a 91-employee driverless truck startup that was founded earlier this year and includes engineers from a number of high-profile tech companies attempting to bring driverless cars to market, including Google, Apple, and Tesla. Uber declined to disclose the terms of the arrangement, but a person familiar with the deal says that if targets are met, it would be worth 1 percent of Uber’s most recent valuation. That would imply a price of about $680 million. Otto’s current employees will also collectively receive 20 percent of any profits Uber earns from building an autonomous trucking business.

Continue reading “Uber Debuts Its First Fleet of Driverless Cars in Pittsburgh” »

Page 1 of 4912345678Last