Menu

Blog

Archive for the ‘nanotechnology’ category: Page 50

Jan 14, 2023

Chemists cook up brand-new kind of nanomaterial

Posted by in categories: chemistry, nanotechnology

There’s a new nanomaterial on the block. University of Oregon chemists have found a way to make carbon-based molecules with a unique structural feature: interlocking rings.

Like other nanomaterials, these linked-together molecules have interesting properties that can be “tuned” by changing their size and chemical makeup. That makes them potentially useful for an array of applications, such as specialized sensors and new kinds of electronics.

“It’s a new topology for , and we’re finding new properties that we haven’t been able to see before,” said James May, a graduate student in chemistry professor Ramesh Jasti’s lab and the first author on the paper. May and his colleagues report their findings in a paper published in Nature Chemistry.

Jan 12, 2023

LED Smart Lighting System Based on Quantum Dots More Accurately Reproduces Daylight

Posted by in categories: computing, nanotechnology, quantum physics

Year 2022 face_with_colon_three


Researchers have designed smart, color-controllable white light devices from quantum dots – tiny semiconductors just a few billionths of a meter in size – which are more efficient and have better color saturation than standard LEDs, and can dynamically reproduce daylight conditions in a single light.

The researchers, from the University of Cambridge, designed the next-generation smart lighting system using a combination of nanotechnology, color science, advanced computational methods, electronics, and a unique fabrication process.

Continue reading “LED Smart Lighting System Based on Quantum Dots More Accurately Reproduces Daylight” »

Jan 12, 2023

New spin control method brings billion-qubit quantum chips closer

Posted by in categories: computing, nanotechnology, quantum physics

Australian engineers have discovered a new way of precisely controlling single electrons nestled in quantum dots that run logic gates. What’s more, the new mechanism is less bulky and requires fewer parts, which could prove essential to making large-scale silicon quantum computers a reality.

The serendipitous discovery, made by engineers at the quantum computing start-up Diraq and UNSW Sydney, is detailed in the journal Nature Nanotechnology.

Continue reading “New spin control method brings billion-qubit quantum chips closer” »

Jan 12, 2023

Optical coating approach prevents fogging and unwanted reflections

Posted by in categories: electronics, nanotechnology

Researchers have developed an optical coating system that combines antifogging and antireflective properties. The new technology could help boost the performance of lidar systems and cameras.

“Walking into a warm room from the cold outside can cause glasses to fog up, blinding the user,” said research team leader Anne Gärtner from Fraunhofer Institute for Applied Optics and Precision Engineering and Friedrich Schiller University Jena, both in Jena, Germany. “The same can happen to sensors such as the lidar systems used in autonomous cars. It is important that surfaces remain highly transparent, even if fogging occurs, so that functionality is maintained.”

In Applied Optics, Gärtner and colleagues describe how they combined a that prevents fogging with porous silicon dioxide nanostructures that reduce reflections. Although the coatings described in the paper were designed specifically for lidar systems, the technology can be tailored for many different applications.

Jan 12, 2023

Now on the molecular scale: Electric motors

Posted by in categories: biotech/medical, nanotechnology

Electric vehicles, powered by macroscopic electric motors, are increasingly prevalent on our streets and highways. These quiet and eco-friendly machines got their start nearly 200 years ago when physicists took the first tiny steps to bring electric motors into the world.

Now a multidisciplinary team led by Northwestern University has made an electric motor you can’t see with the naked eye: an on the molecular scale.

This early work—a motor that can convert into unidirectional motion at the —has implications for and particularly medicine, where the electric molecular motor could team up with biomolecular motors in the human body.

Jan 12, 2023

An electric molecular motor

Posted by in category: nanotechnology

An electrically driven motor on the molecular scale based on [3]catenane is described, in which two cyclobis(paraquat-p-phenylene) rings operate by means of redox reactions, demonstrating highly unidirectional movement around a circular loop.

Jan 11, 2023

Diamond formation kinetics in shock-compressed C─H─O samples recorded

Posted by in categories: chemistry, nanotechnology, space

Year 2022 Basically this can create diamonds from trash.


Laser compression of PET plastics mimics the chemistry inside Uranus and may offer a way to simply produce nanodiamonds.

Jan 10, 2023

A new method to evaluate thermoelectric materials

Posted by in categories: materials, nanotechnology

Working with one of the world’s preeminent thermoelectric materials researchers, a team of researchers in the Clemson Department of Physics and Astronomy and the Clemson Nanomaterials Institute (CNI) has developed a new, fool-proof method to evaluate thermoelectric materials.

Department of Physics and Astronomy Research Assistant Professor Sriparna Bhattacharya, Engineer Herbert Behlow, and CNI Founding Director Apparao Rao collaborated with world-renowned researcher H. J. Goldsmid, professor emeritus at the University of New South Wales (UNSW) in Sydney, Australia, to create a one-stop method for evaluating the efficiency of .

Goldsmid is considered by many to be the “father of thermoelectrics” for his pioneering work in thermoelectric materials. Bhattacharya first connected with Goldsmid on LinkedIn, telling him she had confirmed one of his theoretical predictions during her graduate studies at Clemson University.

Jan 10, 2023

How bio-inspired materials might inform the design of next-generation computers

Posted by in categories: bioengineering, biological, computing, health, nanotechnology

Ralph Lydic, professor in the UT Department of Psychology, and Dmitry Bolmatov, a research assistant professor in the UT Department of Physics and Astronomy, are part of a UT/ORNL research team studying how bio-inspired materials might inform the design of next-generation computers. Their results, published recently in the Proceedings of the National Academy of Sciences, could have big implications for both edge computing and human health.

Scientists at ORNL and UT discovered an artificial is capable of long-term potentiation, or LTP, a hallmark of biological learning and memory. This is the first evidence that a cell alone—without proteins or other biomolecules embedded within it—is capable of LTP that persists for many hours. It is also the first identified nanoscale structure in which memory can be encoded.

“When facilities were shut down as a result of COVID, this led us to pivot away from our usual membrane research,” said John Katsaras, a biophysicist in ORNL’s Neutron Sciences Directorate specializing in neutron scattering and the study of biological membranes at ORNL. “Together with postdoc Haden Scott, we decided to revisit a system previously studied by Pat Collier and co-workers, this time with an entirely different electrical stimulation protocol that we termed ‘training.’”.

Jan 9, 2023

New nanowire sensors are the next step in the Internet of Things

Posted by in categories: biotech/medical, computing, internet, nanotechnology

A new miniscule nitrogen dioxide sensor could help protect the environment from vehicle pollutants that cause lung disease and acid rain.

Researchers from TMOS, the Australian Research Council Center of Excellence for Transformative Meta-Optical Systems have developed a sensor made from an array of nanowires, in a square one fifth of a millimeter per side, which means it could be easily incorporated into a silicon chip.

In research published in the latest issue of Advanced Materials, Ph.D. scholar at the Center’s Australian National University team and lead author Shiyu Wei describes the sensor as requiring no , as it runs on its own solar powered generator.

Page 50 of 257First4748495051525354Last