Menu

Blog

Archive for the ‘engineering’ category: Page 63

Aug 3, 2022

Researchers 3D print high-performance nanostructured alloy that’s both ultrastrong and ductile

Posted by in categories: 3D printing, biotech/medical, engineering, nanotechnology, transportation

Researchers at the University of Massachusetts Amherst and the Georgia Institute of Technology have 3D printed a dual-phase, nanostructured high-entropy alloy that exceeds the strength and ductility of other state-of-the-art additively manufactured materials, which could lead to higher-performance components for applications in aerospace, medicine, energy and transportation.

The work, led by Wen Chen, assistant professor of mechanical and industrial engineering at UMass, and Ting Zhu, professor of mechanical engineering at Georgia Tech, is published by the journal Nature (“Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing”).

Wen Chen, assistant professor of mechanical and industrial engineering at UMass Amherst, stands in front of images of 3D printed high-entropy alloy components (heatsink fan and octect lattice, left) and a cross-sectional electron backscatter diffraction inverse-pole figure map demonstrating a randomly oriented nanolamella microstructure (right). (Image: UMass Amherst)

Aug 3, 2022

Developing a new approach for building quantum computers

Posted by in categories: encryption, engineering, quantum physics, supercomputing

Quantum computing, though still in its early days, has the potential to dramatically increase processing power by harnessing the strange behavior of particles at the smallest scales. Some research groups have already reported performing calculations that would take a traditional supercomputer thousands of years. In the long term, quantum computers could provide unbreakable encryption and simulations of nature beyond today’s capabilities.

A UCLA-led interdisciplinary research team including collaborators at Harvard University has now developed a fundamentally new strategy for building these computers. While the current state of the art employs circuits, semiconductors and other tools of electrical engineering, the team has produced a game plan based in chemists’ ability to custom-design atomic building blocks that control the properties of larger molecular structures when they’re put together.

The findings, published last week in Nature Chemistry, could ultimately lead to a leap in quantum processing power.

Aug 2, 2022

Researchers engineer biofilm capable of producing long-term, continuous electricity from your sweat

Posted by in categories: biotech/medical, computing, engineering, wearables

Researchers have reported the discovery of an exoplanet orbiting Ross 508 near the inner edge of its habitable zone.


Researchers at the University of Massachusetts Amherst recently announced that they have figured out how to engineer a biofilm that harvests the energy in evaporation and converts it to electricity. This biofilm, which was announced in Nature Communications, has the potential to revolutionize the world of wearable electronics, powering everything from personal medical sensors to personal electronics.

“This is a very exciting technology,” says Xiaomeng Liu, graduate student in electrical and computer engineering in UMass Amherst’s College of Engineering and the paper’s lead author. “It is real green energy, and unlike other so-called ‘green-energy’ sources, its production is totally green.”

Continue reading “Researchers engineer biofilm capable of producing long-term, continuous electricity from your sweat” »

Aug 1, 2022

Research finds mechanically driven chemistry accelerates reactions in explosives

Posted by in categories: chemistry, engineering, physics, supercomputing

Scientists at the Lawrence Livermore National Laboratory (LLNL) Energetic Materials Center and Purdue University Materials Engineering Department have used simulations performed on the LLNL supercomputer Quartz to uncover a general mechanism that accelerates chemistry in detonating explosives critical to managing the nation’s nuclear stockpile. Their research is featured in the July 15 issue of the Journal of Physical Chemistry Letters.

Insensitive high explosives based on TATB (1,3,5-triamino-2,4,6-trinitrobenzene) offer enhanced safety properties over more conventional explosives, but physical explanations for these safety characteristics are not clear. Explosive initiation is understood to arise from hotspots that are formed when a shockwave interacts with microstructural defects such as pores. Ultrafast compression of pores leads to an intense localized spike in temperature, which accelerates chemical reactions needed to initiate burning and ultimately . Engineering models for insensitive high explosives—used to assess safety and performance—are based on the hotspot concept but have difficulty in describing a wide range of conditions, indicating missing physics in those models.

Using large-scale atomically resolved reactive molecular dynamics supercomputer simulations, the team aimed to directly compute how hotspots form and grow to better understand what causes them to react.

Aug 1, 2022

Google-backed chip startup Lightmatter just poached a 20-year veteran of Intel to help bring a faster and more energy-efficient computer processor to the mainstream

Posted by in categories: computing, engineering, space travel

The startup is hiring Ritesh Jain, VP of engineering at Intel, to help it move from the prototype phase of its chip development to mass production.


ESA is prepping to send a spacecraft to Venus — a feat which will require state-of-the-art methods to get through the planet’s grueling atmosphere.

Aug 1, 2022

How 3D Printing Can Help in Your Medical Device Manufacturing Project

Posted by in categories: 3D printing, biotech/medical, engineering

The subtractive manufacturing process involves etching, drilling, or cutting from a solid board to build the final product. It is ideal for applications using a wide variety of materials and in the PCB fabrication of large-size products. In the additive manufacturing process, a product is developed by adding material one layer at a time and bonding the layers together until the final product is ready. The ability to control material density and the possibility of including intricate features makes this process versatile. It is used in a range of engineering and manufacturing applications, especially in custom manufacturing.

Benefits of 3D printing in medical device manufacturing.

3D printing is economical and offers quick PCB prototyping without the need for complex manufacturing steps. It optimizes the PCB design process by avoiding possible design faults in the initial PCB design stages. 3D printing is easy on flex PCBs and multilayer PCB printing is possible using the latest design software. With the growing manufacturing trends and improving software, 3D printing will be more than a prototyping tool and can be a viable alternative for production parts. 3D printing has been recently used for the end-part manufacturing of several medical devices like hearing aids, dental implants, and more. It is more beneficial for low-volume productions.

Jul 31, 2022

Arup unveils world’s first algae-powered building

Posted by in categories: energy, engineering, sustainability

Circa 2013 😃


News: the world’s first building to be powered entirely by algae is being piloted in Hamburg, Germany, by engineering firm Arup.

The “bio-adaptive facade”, which Arup says is the first of its kind, uses live microalgae growing in glass louvres to generate renewable energy and provide shade at the same time.

Continue reading “Arup unveils world’s first algae-powered building” »

Jul 30, 2022

The best of both worlds: Combining classical and quantum systems to meet supercomputing demands

Posted by in categories: engineering, particle physics, quantum physics, supercomputing

Quantum entanglement is one of the most fundamental and intriguing phenomena in nature. Recent research on entanglement has proven to be a valuable resource for quantum communication and information processing. Now, scientists from Japan have discovered a stable quantum entangled state of two protons on a silicon surface, opening doors to an organic union of classical and quantum computing platforms and potentially strengthening the future of quantum technology.

One of the most interesting phenomena in quantum mechanics is “quantum entanglement.” This phenomenon describes how certain particles are inextricably linked, such that their states can only be described with reference to each other. This particle interaction also forms the basis of quantum computing. And this is why, in recent years, physicists have looked for techniques to generate entanglement. However, these techniques confront a number of engineering hurdles, including limitations in creating large number of “qubits” (quantum bits, the basic unit of quantum information), the need to maintain extremely low temperatures (1 K), and the use of ultrapure materials. Surfaces or interfaces are crucial in the formation of quantum entanglement. Unfortunately, electrons confined to surfaces are prone to “decoherence,” a condition in which there is no defined phase relationship between the two distinct states.

Jul 30, 2022

New bioremediation material can clean ‘forever chemicals’

Posted by in categories: biotech/medical, chemistry, engineering, food, health

A novel bioremediation technology for cleaning up per-and polyfluoroalkyl substances, or PFAS, chemical pollutants that threaten human health and ecosystem sustainability, has been developed by Texas A&M AgriLife researchers. The material has potential for commercial application for disposing of PFAS, also known as “forever chemicals.”

Published July 28 in Nature Communications, the was a collaboration of Susie Dai, Ph.D., associate professor in the Texas A&M Department of Plant Pathology and Microbiology, and Joshua Yuan, Ph.D., chair and professor in Washington University in St. Louis Department of Energy, Environmental and Chemical Engineering, formerly with the Texas A&M Department of Plant Pathology and Microbiology.

Removing PFAS contamination is a challenge

Continue reading “New bioremediation material can clean ‘forever chemicals’” »

Jul 30, 2022

A self-healing and self-concealing silicon chip ‘fingerprint’ for stronger, hardware security

Posted by in categories: computing, engineering, security

A team of researchers from the National University of Singapore (NUS) has developed a novel technique that allows Physically Unclonable Functions (PUFs) to produce more secure, unique ‘fingerprint’ outputs at a very low cost. This achievement enhances the level of hardware security even in low-end systems on chips.

Traditionally, PUFs are embedded in several commercial chips to uniquely distinguish one from another by generating a secret key, similar to an individual fingerprint. Such a technology prevents hardware piracy, chip counterfeiting and physical attacks.

The research team from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering has taken silicon chip fingerprinting to the next level with two significant improvements: firstly, making PUFs self-healing; and secondly, enabling them to self-conceal.

Page 63 of 238First6061626364656667Last