Menu

Blog

Page 1074

Nov 29, 2023

Wix CEO Avishai Abrahami isn’t worried AI will kill the web

Posted by in categories: business, internet, robotics/AI

The co-founder of website builder Wix is embracing generative AI, and he’s not too worried that it might destroy the business models of the web.


Wix CEO Avishai Abrahami is embracing generative AI and thinks the business models of the web can survive it.

Nov 29, 2023

AI Video Startup HeyGen Launches Near-Instant Avatar Generator, Adds $5.6 Million In Funding

Posted by in categories: finance, robotics/AI

Former Snap software engineer Joshua Xu believes AI-generated video is about to have a moment like Snapchat or Instagram had in the early days of the mobile photography revolution.


As early proof of that, he points to his own company HeyGen. After launching its AI-powered video creation app last September, HeyGen reached $1 million in annual recurring revenue in March, then $10 million in August. Today, that number is up to $18 million, Xu, cofounder and CEO, told Forbes.

“Snapchat is a camera company where everyone creates content through the mobile camera,” Xu said. “We think AI can create the content. AI could become the new camera.”

Continue reading “AI Video Startup HeyGen Launches Near-Instant Avatar Generator, Adds $5.6 Million In Funding” »

Nov 29, 2023

Quantum Computing Is Coming Faster Than You Think

Posted by in categories: encryption, quantum physics, robotics/AI, security

It seems for every proponent for quantum computing there is also a detractor.


Given the amount of quantum computing investment, advancements, and activity, the industry is set for a dynamic change, similar to that caused by AI – increased performance, functionality, and intelligence. This also comes with the same challenges presented by AI, such as security, as outlined in the recent Quantum Safe Cryptography article. But just like AI, quantum computing is coming. You might say that quantum computing is where AI was in 2015, fascinating but not widely utilized. Fast forward just five years and AI was being integrated into almost every platform and application. In just five years, quantum computing could take computing and humanity to a new level of knowledge and understanding.

Follow me on Twitter or LinkedIn. Check out my website.

Continue reading “Quantum Computing Is Coming Faster Than You Think” »

Nov 29, 2023

Amazon Introduces New Quantum Chip To Reduce Errors

Posted by in categories: computing, quantum physics

Quantum computing, the cutting-edge technology that promises unprecedented computational power, has taken a significant leap forward with the unveiling of a groundbreaking quantum chip by Amazon Web Services.

“It’s a custom-designed chip that’s totally fabricated in house by our AWS quantum team,” said Peter Desantis, senior vice president of AWS utility computing products, during a keynote address in Las Vegas at AWS’s re: Invent conference for the global cloud computing community.

DeSantis said the state-of-the-art chip represents a major milestone in the quest for error-corrected quantum computers. “We’ve been able to suppress errors by 100x by using a passive error correction approach,” he said.

Nov 29, 2023

Inverted Perovskite Solar Cell Breaks 25% Efficiency Record

Posted by in categories: particle physics, solar power, sustainability

Northwestern University researchers have raised the standards again for perovskite solar cells with a new development that helped the emerging technology hit new records for efficiency.

The findings, published today (Nov. 17) in the journal Science, describe a dual-molecule solution to overcoming losses in efficiency as sunlight is converted to energy. By incorporating first, a molecule to address something called surface recombination, in which electrons are lost when they are trapped by defects—missing atoms on the surface, and a second molecule to disrupt recombination at the interface between layers, the team achieved a National Renewable Energy Lab (NREL) certified efficiency of 25.1% where earlier approaches reached efficiencies of just 24.09%.

“Perovskite solar technology is moving fast, and the emphasis of research and development is shifting from the bulk absorber to the interfaces,” said Northwestern professor Ted Sargent. “This is the critical point to further improve efficiency and stability and bring us closer to this promising route to ever-more-efficient solar harvesting.”

Nov 29, 2023

Dark Matter Detective Work: A Revolutionary Approach at the Large Hadron Collider

Posted by in categories: cosmology, particle physics

Researchers investigate whether dark matter particles actually are produced inside a jet of standard model particles.

The existence of dark matter is a long-standing puzzle in our universe. Dark matter makes up about a quarter of our universe, yet it does not interact significantly with ordinary matter. The existence of dark matter has been confirmed by a series of astrophysical and cosmological observations, including in the stunning recent pictures from the James Webb Space Telescope. However, up to date, no experimental observation of dark matter has been reported. The existence of dark matter has been a question that high energy and astrophysicists around the world have been investigating for decades.

Advancements in Dark Matter Research.

Nov 29, 2023

Electrochemical C–N Bond Formation within Boron Imidazolate Cages Featuring Single Copper Sites

Posted by in categories: chemistry, energy, sustainability

Electrocatalysis expands the ability to generate industrially relevant chemicals locally and on-demand with intermittent renewable energy, thereby improving grid resiliency and reducing supply logistics. Herein, we report the feasibility of using molecular copper boron-imidazolate cages, BIF-29(Cu), to enable coupling between the electroreduction reaction of CO2 (CO2RR) with NO3– reduction (NO3RR) to produce urea with high selectivity of 68.5% and activity of 424 μA cm–2. Remarkably, BIF-29(Cu) is among the most selective systems for this multistep C–N coupling to-date, despite possessing isolated single-metal sites. The mechanism for C–N bond formation was probed with a combination of electrochemical analysis, in situ spectroscopy, and atomic-scale simulations. We found that NO3RR and CO2RR occur in tandem at separate copper sites with the most favorable C–N coupling pathway following the condensation between *CO and NH2OH to produce urea. This work highlights the utility of supramolecular metal–organic cages with atomically discrete active sites to enable highly efficient coupling reactions.

Nov 29, 2023

Unlocking the future: where is gene editing going next?

Posted by in categories: bioengineering, biotech/medical

In our latest feature, we explore the future of gene editing and the challenges we must overcome to harness its full potential.

Nov 29, 2023

Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity

Posted by in category: neuroscience

PSC-brain organoids are typically formed by static medium switches. Here, authors show that a temporal morphogen gradient during neural induction allows the formation of well-specified cortical organoids with a self-organized single neuroepithelium.

Nov 29, 2023

A new way to see the activity inside a living cell

Posted by in categories: biotech/medical, neuroscience

Living cells are bombarded with many kinds of incoming molecular signal that influence their behavior. Being able to measure those signals and how cells respond to them through downstream molecular signaling networks could help scientists learn much more about how cells work, including what happens as they age or become diseased.

Right now, this kind of comprehensive study is not possible because current techniques for imaging cells are limited to just a handful of different molecule types within a cell at one time. However, MIT researchers have developed an alternative method that allows them to observe up to seven different molecules at a time, and potentially even more than that.

“There are many examples in biology where an event triggers a long downstream cascade of events, which then causes a specific cellular function,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology. “How does that occur? It’s arguably one of the fundamental problems of biology, and so we wondered, could you simply watch it happen?”