Menu

Blog

Archive for the ‘nanotechnology’ category: Page 40

Mar 27, 2023

Fermi Paradox: All Alien Civilizations Become Nanotechnological

Posted by in categories: alien life, existential risks, nanotechnology

An exploration in nanotechnology and how even as highly advanced as it could be, might show no technosignature or SETI detectable signal, thus if all alien civilizations convert to a nanotechnological existence, then this would solve the Fermi Paradox.

My Patreon Page:

Continue reading “Fermi Paradox: All Alien Civilizations Become Nanotechnological” »

Mar 25, 2023

Carbon Nanotubes for Digital Logic

Posted by in categories: computing, nanotechnology

Speaker: George Tulevski, materials science engineer at IBM Research.

The exceptional electronic properties of carbon nanotubes, coupled with their small size, makes them ideal materials for future nanoelectronic devices. The integration of these materials into advanced microprocessors requires a radical shift in fabrication from conventional top-down process to bottom-up assembly where advances in sorting and directed assembly are needed. This presentation will briefly describe the challenges to future transistor scaling, highlight the advantages of employing carbon nanotubes for digital logic and describe the recent progress in this area.

Mar 25, 2023

Carbon nanotube transistors outperform silicon for first time ever

Posted by in categories: computing, mobile phones, nanotechnology

In a world first, a team of University of Wisconsin-Madison materials engineers have created carbon nanotube transistors that outperform state-of-the-art silicon transistors.

A big milestone for nanotechnology, this breakthrough could enable longer battery life, faster wireless communication and faster processing speeds for devices like smartphones and laptops.

Continue reading “Carbon nanotube transistors outperform silicon for first time ever” »

Mar 25, 2023

Team develops large-scale stretchable and transparent electrodes

Posted by in categories: nanotechnology, solar power, sustainability, wearables

A Korean research team has developed a large-scale stretchable and transparent electrode for use as a stretchable display. The Korea Institute of Science and Technology (KIST) announced that a research team, led by Dr. Sang-Soo Lee and Dr. Jeong Gon Son at KIST’s Photo-Electronic Hybrids Research Center, has developed a technology to fabricate a large-area (larger than an A4 sized paper) wavy silver nanowire network electrode that is structurally stretchable with a high degree of conductivity and transparency.

Transparent electrodes, through which electricity flows, are essential for solar cell-and touchscreen-based display devices. An (ITO)-based is currently commercialized for use. The ITO-based transparent is made of a thin layer of metallic oxides that have very low stretchability and is very fragile. Thus, the ITO electrode is not well suited for flexible and wearable devices, which are expected to quickly become mainstream products in the electronic device market. Therefore, it is necessary to develop a new transparent electrode with stretchability as one of its main features.

A nanowire is tens of nanometers in diameter, and the nano material itself is long and thin like a stick. The small size of the nanowire allows it to be bent when an external force is applied. Since it is made of silver, a silver nanowire has excellent electrical conductivity and can be used in a random network of straight to fabricate a highly transparent and flexible electrode. However, despite the fact that silver nanowire is bendable and flexible, it cannot be used as a stretchable material.

Mar 25, 2023

Bifunctional flexible electrochromic supercapacitors successfully fabricated

Posted by in categories: energy, nanotechnology, wearables

Researchers from the Harbin Institute of Technology and Southern University of Science and Technology have fabricated bifunctional flexible electrochromic energy-storage devices based on silver nanowire flexible transparent electrodes.

Publishing in the International Journal of Extreme Manufacturing, the team used silver nanowire flexible transparent electrodes as the current collector for a bifunctional flexible electrochromic supercapacitor.

This bifunctional flexible device can exhibit its energy status through color changes, and can serve as an energy supplier for various wearable electronics, such as physiological sensors. The findings could have a widespread impact on the future development of smart windows for energy-efficient buildings.

Mar 25, 2023

Developing smart light traps inspired by photosynthesis

Posted by in categories: chemistry, energy, nanotechnology, sustainability

Plants use photosynthesis to harvest energy from sunlight. Now researchers at the Technical University of Munich (TUM) have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.

Syngas, a mixture of carbon monoxide and hydrogen, is an important intermediate product in the manufacture of many chemical starter materials such as ammonia, methanol and synthetic hydrocarbon fuels. “Syngas is currently made almost exclusively using fossil ,” says Prof. Roland Fischer from the Chair of Inorganic and Organometallic Chemistry.

A yellow powder, developed by a research team led by Fischer, is to change all that. The scientists were inspired by photosynthesis, the process plants use to produce chemical energy from light. “Nature needs carbon dioxide and water for photosynthesis,” says Fischer. The nanomaterial developed by the researchers imitates the properties of the enzymes involved in photosynthesis. The “nanozyme” produces syngas using carbon dioxide, water and light in a similar manner.

Mar 25, 2023

Tiny nanoparticle could have big impact on patients receiving corneal transplants

Posted by in categories: biotech/medical, nanotechnology

Corneal transplants can be the last step to returning clear vision to many patients suffering from eye disease. Each year, approximately 80,000 corneal transplantations take place in the U.S. Worldwide, more than 184,000 corneal transplantation surgeries are performed annually.

However, rejection rates for the corneal grafts can be as high as 10%. This is largely due to poor patient compliance to the medications, which require frequent administrations of topical eyedrops over a long period of time.

This becomes especially acute when patients show signs of early rejection of the transplanted corneas. When this occurs, patients need to apply topical eyedrops hourly to rescue the corneal grafts from failure.

Mar 23, 2023

‘Inkable’ nanomaterial promises big benefits for bendable electronics

Posted by in categories: chemistry, computing, mobile phones, nanotechnology

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

The material, , could be incorporated into many components of future technologies including mobile phones and computers, thanks to its versatility and recent advances in nanotechnology, according to the team.

RMIT University’s Associate Professor Enrico Della Gaspera and Dr. Joel van Embden led a team of global experts to review production strategies, capabilities and potential applications of zinc oxide nanocrystals in the journal Chemical Reviews.

Mar 23, 2023

Nanotechnology could be used to treat lymphedema

Posted by in categories: biotech/medical, engineering, nanotechnology

The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It’s remarkably efficient, but if damaged from injury or cancer treatment, the whole system starts to fail. The resulting fluid retention and swelling, called lymphedema, isn’t just uncomfortable—it’s also irreversible.

When fail, typically their ability to pump out the fluid is compromised. Georgia Institute of Technology researchers have developed a new treatment using nanoparticles that can repair lymphatic pumping. Traditionally, researchers in the field have tried to regrow lymphatic vessels, but repairing the pumping action is a unique approach.

“With many patients, the challenge is that the lymphatic vessels that still exist in the patient aren’t working. So it’s not that you need to grow new vessels that you can think of as tubes, it’s that you need to get the tubes to work, which for lymphatic vessels means to pump,” said Brandon Dixon, a professor in the George W. Woodruff School of Mechanical Engineering. “That’s where our approach is really different. It delivers a drug to help lymphatic vessels pump using a nanoparticle that can drain into the diseased vessels themselves.”

Mar 21, 2023

Semiconductor lattice marries electrons and magnetic moments

Posted by in categories: engineering, nanotechnology, particle physics, quantum physics

A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.

The group’s paper, “Gate-Tunable Heavy Fermions in a Moiré Kondo Lattice,” published March 15 in Nature. The lead author is postdoctoral fellow Wenjin Zhao in the Kavli Institute at Cornell.

The project was led by Kin Fai Mak, professor of physics in the College of Arts and Sciences, and Jie Shan, professor of applied and engineering physics in Cornell Engineering and in A&S, the paper’s co-senior authors. Both researchers are members of the Kavli Institute; they came to Cornell through the provost’s Nanoscale Science and Microsystems Engineering (NEXT Nano) initiative.

Page 40 of 257First3738394041424344Last