Menu

Blog

Archive for the ‘nanotechnology’ category: Page 41

Mar 20, 2023

New Ultralight Material Is Tougher than Steel and Kevlar

Posted by in categories: nanotechnology, particle physics

A joint research project’s findings have just been published in the journal Nature Materials from engineers from MIT, Caltech, and ETH Zurich that has yielded a “nano-architectured” material that could prove stronger than Kevlar and steel. This material, once scaled, could provide a means of developed lightweight, protective coverings, blast shields, and other impact-resistance materials and armors for various industries.

The material is less than a width of a human hair, but still able to prevent the tiny, high-speed particles from penetrating it. According to the researchers behind the project, when compared with steel Kevlar, aluminum rother impact-resistant materials of comparable weight, the new nanotech armor outperforms them all.

Mar 20, 2023

Electroactive bacterium generates well-defined nanosized metal catalysts with remarkable water-splitting performance

Posted by in categories: biological, chemistry, nanotechnology, particle physics, sustainability

A biological method that produces metal nanoclusters using the electroactive bacterium Geobacter sulfurreducens could provide a cheap and sustainable solution to high-performance catalyst synthesis for various applications such as water splitting.

Metal nanoclusters contain fewer than one hundred atoms and are much smaller than nanoparticles. They have unique electronic properties but also feature numerous active sites available for catalysis on their surface. There are several synthetic methods for making nanoclusters, but most require multiple steps involving and harsh temperature and pressure conditions.

Continue reading “Electroactive bacterium generates well-defined nanosized metal catalysts with remarkable water-splitting performance” »

Mar 18, 2023

This nanoparticle could be the key to a universal covid vaccine

Posted by in categories: biotech/medical, nanotechnology

Year 2022 😗😁 Basically more thought on this virus seems more like a foglet biotechnology so it would stand to reason that a nanotechnology with biotechnology could solve the universal vaccine.


Ending the covid pandemic might well require a vaccine that protects against any new strains. Researchers may have found a strategy that will work.

Mar 18, 2023

Mosaic RBD nanoparticles protect against challenge

Posted by in categories: biotech/medical, nanotechnology

Year 2022 This is their published work on the universal vaccine of the covid 19.


A mosaic sarbecovirus nanoparticle protects against SARS-2 and SARS-1, whereas a SARS-2 nanoparticle only protects against SARS-2.

Mar 16, 2023

Controlling the degree of twist in nanostructured particles for the first time

Posted by in categories: biotech/medical, nanotechnology

Micron-sized “bow ties,” self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team led by the University of Michigan has shown.

The development opens the way for easily producing materials that interact with twisted light, providing new tools for machine vision and producing medicines.

While biology is full of twisted structures like DNA, known as chiral structures, the degree of twist is locked in—trying to change it breaks the structure. Now, researchers can engineer the degree of twist.

Mar 15, 2023

Detect, bind and cut: Biomolecular action at the nanoscale

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Researchers at Kanazawa University report in ACS Nano how high-speed atomic force microscopy can be used to study the biomolecular mechanisms underlying gene editing.

The DNA of prokaryotes—single-cell organisms, for example bacteria—is known to contain sequences that are derived from DNA fragments of viruses that infected the prokaryote earlier. These sequences, collectively referred to as CRISPR, for “clustered regularly interspaced short palindromic repeats,” play a major role in the antiviral defense system of bacteria, as they enable the recognition and subsequent neutralization of infecting viruses. The latter is done through the enzyme Cas9 (“CRISPR-associated protein 9”), a biomolecule that can locally unwind DNA, check for the existence of the CRISPR sequence and, when found, cut the DNA.

Continue reading “Detect, bind and cut: Biomolecular action at the nanoscale” »

Mar 15, 2023

DNA synthesis technologies to close the gene writing gap

Posted by in categories: biotech/medical, computing, economics, engineering, genetics, nanotechnology

NPL, in collaboration with London Biofoundry and BiologIC Technologies Ltd, have released an analysis on existing and emerging DNA Synthesis technologies in Nature Reviews Chemistry, featuring the work on the front cover.

The study, which was initiated by DSTL, set out to understand the development trajectory of DNA Synthesis as a major industry drive for the UK economy over the next 10 years. The demand for synthetic DNA is growing exponentially. However, our ability to make, or write, DNA lags behind our ability to sequence, or read, it. The study reviewed existing and emerging DNA synthesis technologies developed to close this gene writing gap.

DNA or genes provide a universal tool to engineer and manipulate living systems. Recent progress in DNA synthesis has brought up limitless possibilities in a variety of industry sectors. Engineering biology, therapy and diagnostics, , defense and nanotechnology are all set for unprecedented breakthroughs if DNA can be provided at scale and low cost.

Mar 14, 2023

Developing nanoprobes to detect neurotransmitters in the brain

Posted by in categories: chemistry, nanotechnology, neuroscience

The animal brain consists of tens of billions of neurons or nerve cells that perform complex tasks like processing emotions, learning, and making judgments by communicating with each other via neurotransmitters. These small signaling molecules diffuse—move from high to low concentration regions—between neurons, acting as chemical messengers.

Scientists believe that this diffusive motion might be at the heart of the brain’s superior function. Therefore, they have aimed to understand the role of specific neurotransmitters by detecting their release in the brain using amperometric and microdialysis methods. However, these methods provide insufficient information, necessitating better sensing techniques.

To this end, scientists developed an optical imaging method wherein protein probes change their fluorescence intensity upon detecting a specific . Recently, a group of researchers from Shibaura Institute of Technology in Japan led by Professor Yasuo Yoshimi has taken this idea forward. They have successfully synthesized fluorescent molecularly imprinted polymeric nanoparticles (fMIP-NPs) that serve as probes to detect specific neurotransmitters–serotonin, dopamine, and acetylcholine.

Mar 13, 2023

Ray Kurzweil says We’ll Reach IMMORTALITY by 2030 | The Singularity IS NEAR

Posted by in categories: biotech/medical, genetics, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity

Ray Kurzweil — The Singularity IS NEAR — part 2! We’ll Reach IMMORTALITY by 2030
Get ready for an exciting journey into the future with Ray Kurzweil’s The Singularity IS NEAR — Part 2! Join us as we explore the awe-inspiring possibilities of what could be achieved before 2030, including the potential for humans to reach immortality. We’ll dive into the incredible technology that could help us reach this singularity and uncover what the implications of achieving immortality could be. Don’t miss out on this fascinating insight into the future of mankind!
In his book “The Singularity Is Near”, futurist and inventor Ray Kurzweil argues that we are rapidly approaching a point in time known as the singularity. This refers to the moment when artificial intelligence and other technologies will become so advanced that they surpass human intelligence and change the course of human evolution forever.

Kurzweil predicts that by 2030, we will reach a crucial milestone in our technological progress: immortality. He bases this prediction on his observation of exponential growth in various fields such as genetics, nanotechnology, and robotics, which he believes will culminate in the creation of what he calls “nanobots”.

Continue reading “Ray Kurzweil says We’ll Reach IMMORTALITY by 2030 | The Singularity IS NEAR” »

Mar 12, 2023

Knots smaller than human hair make materials unusually tough

Posted by in categories: biotech/medical, nanotechnology

In the latest advance in nano-and micro-architected materials, engineers at Caltech have developed a new material made from numerous interconnected microscale knots.

The make the material far tougher than identically structured but unknotted materials: they absorb more energy and are able to deform more while still being able to return to their original shape undamaged. These new knotted materials may find applications in biomedicine as well as in aerospace applications due to their durability, possible biocompatibility, and extreme deformability.

Continue reading “Knots smaller than human hair make materials unusually tough” »

Page 41 of 257First3839404142434445Last