Blog

Archive for the ‘nanotechnology’ category

May 17, 2016

How nanotechnology could detect and treat cancer

Posted by in categories: biotech/medical, nanotechnology, neuroscience

The crew of the Proteus has one desperate chance to save a man’s life. Shrunk to the size of a large bacterium, the submarine contains a team of scientists and physicians racing to destroy a blood clot in the brain of a Soviet defector. The group journeys through the body, evading giant white blood cells and tiny antibodies while traveling through the heart, the inner ear and the brain to reach and destroy the blockage.

Although events in the film Fantastic Voyage were far-fetched when it was released in 1966, they’re now being realized every day in labs around the world, particularly in cancer treatment. A growing field called nanotechnology is allowing researchers to manipulate molecules and structures much smaller than a single cell to enhance our ability to see, monitor and destroy cancer cells in the body.

Tens of thousands of patients have already received chemotherapy drugs delivered by nanoparticles called liposomes, and dozens of other approaches are currently in clinical trials. Within the next five to 10 years, our bodies’ biggest defenders may be tinier than we could have ever imagined.

Continue reading “How nanotechnology could detect and treat cancer” »

May 17, 2016

Magnetic Hyperbolic Optical Metamaterial Could Advance Thermophotovoltaics

Posted by in categories: energy, nanotechnology, physics

Improving energy efficiencies — nice.


The remarkable properties researchers at the Australian National University (ARC Centre of Excellence CUDOS) and the University of California Berkeley have discovered in a new nano-metamaterial could lead to highly efficient thermophotovoltaic cells. The new artificial material glows in an unusual way when headed.

As shown in the image, the metamaterial comprises 20 stacked alternating layers of 30-nm-thick gold and 45-nm-thick magnesium fluoride dielectric, perforated with 260 x 530 nm holes that are arranged into a 750 x 750 nm square lattice.

Continue reading “Magnetic Hyperbolic Optical Metamaterial Could Advance Thermophotovoltaics” »

May 16, 2016

Nanorobots: Where We Are Today and Why Their Future Has Amazing Potential

Posted by in categories: computing, health, nanotechnology, robotics/AI

This post is a status update on one of the most powerful tools humanity will ever create: nanotechnology (or nanotech).

My goal here is to give you a quick overview of the work going on in labs around the world, and the potential applications this nanotech work will have in health, energy, the environment, materials science, data storage and processing.

As artificial intelligence has been getting a lot of the attention lately, I believe we’re going to start to see and hear about incredible breakthroughs in the nanotech world very soon.

Continue reading “Nanorobots: Where We Are Today and Why Their Future Has Amazing Potential” »

May 16, 2016

Peter: Nanorobots… Inside You

Posted by in categories: computing, health, nanotechnology, robotics/AI

This blog is a status update on one of the most powerful tools humanity will ever create: Nanotechnology (or nanotech).

My goal here is to give you a quick overview of the work going on in labs around the world, and the potential applications this nanotech work will have in health, energy, the environment, material sciences, data storage and processing.

As artificial intelligence has been getting a lot of the attention lately, I believe we’re going to start to see and hear about incredible breakthroughs in the nanotech world very soon.

Continue reading “Peter: Nanorobots… Inside You” »

May 14, 2016

Adapting As Nano Approaches Biological Complexity: Witnessing Human-AI Integration Critically

Posted by in categories: engineering, nanotechnology, robotics/AI

Today’s emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally changing research itself, over applications critical to future survival, to posing small and medium as well as truly globally existential dangers.

Continue reading “Adapting As Nano Approaches Biological Complexity: Witnessing Human-AI Integration Critically” »

May 14, 2016

Physicists measure van der Waals forces of individual atoms for the first time

Posted by in categories: nanotechnology, particle physics

Abstract: Physicists at the Swiss Nanoscience Institute and the University of Basel have succeeded in measuring the very weak van der Waals forces between individual atoms for the first time. To do this, they fixed individual noble gas atoms within a molecular network and determined the interactions with a single xenon atom that they had positioned at the tip of an atomic force microscope. As expected, the forces varied according to the distance between the two atoms; but, in some cases, the forces were several times larger than theoretically calculated. These findings are reported by the international team of researchers in Nature Communications.

May 14, 2016

Nanotechnology To Make Holographic Applications More Secure And Efficient

Posted by in categories: biotech/medical, encryption, nanotechnology, security

Making Holographic Apps more secured and efficient.


Since its birth, holograms have been extensively used to serve security systems and related purposes. The making of a hologram, dissecting it to pieces and again rejoining the blocks involves a steady orientation of lenses which encodes the information with depth perception that could be deciphered later according to requirement.

It’s hard to imagine a 21st century city running smooth without an immense use of holograms, small or big sized 2D cards with 3D engraved pictures that are present in credit cards, grocery objects, books, biomedical devices and in other objects requiring retrievable information to be stored.

Continue reading “Nanotechnology To Make Holographic Applications More Secure And Efficient” »

May 13, 2016

Nanotechnology improves holographic capabilities

Posted by in categories: biotech/medical, nanotechnology

Holograms are a ubiquitous part of our lives. They are in our wallets—protecting credit cards, cash and driver’s licenses from fraud—in grocery store scanners and biomedical devices.

Even though holographic technology has been around for decades, researchers still struggle to make compact holograms more efficient, complex and secure.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have programmed into compact holograms. These holograms use nanostructures that are sensitive to polarization (the direction in which light vibrates) to produce different images depending on the polarization of . This advancement, which works across the spectrum of light, may improvement anti-fraud holograms as well as those used in entertainment displays.

May 13, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering

Posted by in categories: biotech/medical, engineering, nanotechnology

The fabrication of a prototype tissue with functional properties close to natural tissues is crucial for effective transplantation. Tissue engineering scaffolds are typically used as supports that allow cells to form tissue-like structures essentially required for the correct functioning of the cells under the conditions close to the three-dimensional tissue.

Scientists of the Bionanotechnology Lab at Kazan Federal University combined biopolymers chitosan and agarose (polysaccharides) and gelatine protein to produce tissue engineering scaffolds and demonstrated the enhancement of mechanical strength, higher and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite.

Chitosan, a natural biodegradable and chemically versatile biopolymer, has been effectively used in antibacterial, antifungal, anti-tumour and immunostimulating formulations. To overcome the disadvantages of pure chitosan scaffolds such as mechanical fragility and low biological resistance, chitosan scaffolds are typically doped with other supporting compounds that allow for mechanical strengthening, thus yielding composite biologically resistant scaffolds.

Continue reading “Clay nanotube-biopolymer composite scaffolds for tissue engineering” »

May 13, 2016

‘Radical life extension’ coming, futurist says

Posted by in categories: 3D printing, bioengineering, computing, life extension, nanotechnology, neuroscience, Ray Kurzweil

KITCHENER — Big jumps in life expectancy will begin in as little as 10 years thanks to advances in nanotechnology and 3D printing that will also enable wireless connections among human brains and cloud computers, a leading futurist said Thursday.

“In 10 or 15 years from now we will be adding more than a year, every year, to your life expectancy,” Ray Kurzweil told an audience of 800 people at Communtech’s annual Tech Leadership conference.

Kurzweil, a futurist, inventor and author, as well as a director of engineering at Google, calls this “radical life extension.”

Continue reading “‘Radical life extension’ coming, futurist says” »

Page 2 of 2912345678Last