Menu

Blog

Archive for the ‘information science’ category: Page 46

Mar 7, 2023

WHAT happens When AI Becomes SELF-AWARE…

Posted by in categories: information science, robotics/AI

In recent years, the field of artificial intelligence has made tremendous strides, but what happens when #AI systems become #selfaware? In this video, we’ll explore the concept of AI self-awareness, its #scary implications for society, and what it means for the #future of AI.

AI self-awareness is the ability of an #artificialintelligence system to recognize its own existence and understand the consequences of its actions. While there are different levels of self-awareness that an AI system could potentially exhibit, it generally involves the system being able to recognize and respond to changes in its own state.
One way that researchers are exploring AI self-awareness is by using neural networks and other machine learning algorithms. For example, researchers have created AI systems that can recognize and respond to their own errors, which is an important first step in developing higher-order self-awareness.

Continue reading “WHAT happens When AI Becomes SELF-AWARE…” »

Mar 7, 2023

Quantum computers that use ‘cat qubits’ may make fewer errors

Posted by in categories: computing, encryption, information science, quantum physics

Quantum bits inspired by Schrödinger’s cat could allow quantum computers to make fewer mistakes and more efficiently crack algorithms used for encryption.

By Karmela Padavic-Callaghan

Mar 7, 2023

Augmented Reality with X-Ray Vision

Posted by in categories: augmented reality, information science, robotics/AI

X-AR uses wireless signals and computer vision to enable users to perceive things that are invisible to the human eye (i.e., to deliver non-line-of-sight perception). It combines new antenna designs, wireless signal processing algorithms, and AI-based fusion of different sensors.

This design introduces three main innovations:

Continue reading “Augmented Reality with X-Ray Vision” »

Mar 7, 2023

How Humans Could Go Interstellar, Without Warp Drive

Posted by in categories: cosmology, economics, information science, space travel

The field equations of Einstein’s General Relativity theory say that faster-than-light (FTL) travel is possible, so a handful of researchers are working to see whether a Star Trek-style warp drive, or perhaps a kind of artificial wormhole, could be created through our technology.

But even if shown feasible tomorrow, it’s possible that designs for an FTL system could be as far ahead of a functional starship as Leonardo da Vinci’s 16th century drawings of flying machines were ahead of the Wright Flyer of 1903. But this need not be a showstopper against human interstellar flight in the next century or two. Short of FTL travel, there are technologies in the works that could enable human expeditions to planets orbiting some of the nearest stars.

Certainly, feasibility of such missions will depend on geopolitical-economic factors. But it also will depend on the distance to nearest Earth-like exoplanet. Located roughly 4.37 light years away, Alpha Centauri is the Sun’s closest neighbor; thus science fiction, including Star Trek, has envisioned it as humanity’s first interstellar destination.

Mar 6, 2023

Now AI Can Be Used to Design New Proteins

Posted by in categories: information science, robotics/AI

ABOVE: © ISTOCK.COM, CHRISTOPH BURGSTEDT

Artificial intelligence algorithms have had a meteoric impact on protein structure, such as when DeepMind’s AlphaFold2 predicted the structures of 200 million proteins. Now, David Baker and his team of biochemists at the University of Washington have taken protein-folding AI a step further. In a Nature publication from February 22, they outlined how they used AI to design tailor-made, functional proteins that they could synthesize and produce in live cells, creating new opportunities for protein engineering. Ali Madani, founder and CEO of Profluent, a company that uses other AI technology to design proteins, says this study “went the distance” in protein design and remarks that we’re now witnessing “the burgeoning of a new field.”

Proteins are made up of different combinations of amino acids linked together in folded chains, producing a boundless variety of 3D shapes. Predicting a protein’s 3D structure based on its sequence alone is an impossible task for the human mind, owing to numerous factors that govern protein folding, such as the sequence and length of the biomolecule’s amino acids, how it interacts with other molecules, and the sugars added to its surface. Instead, scientists have determined protein structure for decades using experimental techniques such as X-ray crystallography, which can resolve protein folds in atomic detail by diffracting X-rays through crystallized protein. But such methods are expensive, time-consuming, and depend on skillful execution. Still, scientists using these techniques have managed to resolve thousands of protein structures, creating a wealth of data that could then be used to train AI algorithms to determine the structures of other proteins. DeepMind famously demonstrated that machine learning could predict a protein’s structure from its amino acid sequence with the AlphaFold system and then improved its accuracy by training AlphaFold2 on 170,000 protein structures.

Mar 5, 2023

NASA captures sequestered carbon of 9.9 billion trees with deep-learning and satellite images

Posted by in categories: information science, robotics/AI, satellites

A NASA-led research team used satellite imagery and artificial intelligence methods to map billions of discrete tree crowns down to a 50-cm scale. The images encompassed a large swath of arid northern Africa, from the Atlantic to the Red Sea. Allometric equations based on previous tree sampling allowed the researchers to convert imagery into estimates of tree wood, foliage, root size, and carbon sequestration.

The new NASA estimation, published in the journal Nature, was surprisingly low. While the typical estimation of a region’s might rely on counting small areas and extrapolating results upwards, the NASA demonstrated technique only counts the trees that are actually there, down to the individual tree. Jules Bayala and Meine van Noordwijk published a News & Views article in the same journal commenting on the NASA team’s work.

Continue reading “NASA captures sequestered carbon of 9.9 billion trees with deep-learning and satellite images” »

Mar 5, 2023

Is science about to end? | Sabine Hossenfelder

Posted by in categories: computing, information science, particle physics, quantum physics, science

Short and sweet. Everyone needs a daily dose of Sabine.


Is science close to explaining everything about our universe? Physicist Sabine Hossenfelder reacts.

Continue reading “Is science about to end? | Sabine Hossenfelder” »

Mar 5, 2023

Mathematicians Discovered a New, Much Faster Way to Multiply Large Numbers

Posted by in categories: information science, mathematics

Two mathematicians from Australia and France have come up with a new, faster way to multiply extremely long numbers together.

In doing so, they have cracked an algorithmic puzzle that remained unsolved by some of the world’s best-known math minds, for almost fifty years.

Mar 5, 2023

Computer Helps Prove Long-Sought Fluid Equation Singularity

Posted by in categories: computing, information science, mathematics, singularity

Year 2022 face_with_colon_three


For more than 250 years, mathematicians have wondered if the Euler equations might sometimes fail to describe a fluid’s flow. A new computer-assisted proof marks a major breakthrough in that quest.

Mar 4, 2023

NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images

Posted by in categories: information science, mapping, mobile phones, satellites

ALGORITHMS TURN PHOTO SHAPSHOTS INTO 3D VIDEO AND OR IMMERSIVE SPACE. This has been termed “Neural Radiance Fields.” Now Google Maps wants to turn Google Maps into a gigantic 3D space. Three videos below demonstrate the method. 1) A simple demonstration, 2) Google’s immersive maps, and 3) Using this principle to make dark, grainy photographs clear and immersive.

This technique is different from “time of flight” cameras which make a 3D snapshot based on the time light takes to travel to and from objects, but combined with this technology, and with a constellation of microsatellites as large as cell phones, a new version of “Google Earth” with live, continual imaging of the whole planet could eventually be envisioned.

Continue reading “NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images” »

Page 46 of 280First4344454647484950Last