Menu

Blog

Page 1231

Oct 30, 2023

How a single synapse transmits both visual and subconscious information to the brain of fruit flies

Posted by in categories: biological, life extension, neuroscience

Research led by Peking University, China, has discovered a single type of retinal photoreceptor cell in Drosophila (fruit fly) is involved in both visual perception and circadian photoentrainment by co-releasing histamine and acetylcholine at the first visual synapse.

In a paper, “A single photoreceptor splits perception and entrainment by cotransmission,” published in Nature, the team details the discovery that the Drosophila visual system segregates and circadian photoentrainment by co-transmitting two neurotransmitters, histamine and acetylcholine, in the R8 cells.

Light detection involves capturing signals through photoreceptors in the eye, which are essential for image formation and subconscious visual functions, such as regulating biological rhythms according to the daily light-dark cycle (photoentrainment of the ). The optical system has distinct pathways for image formation (based on local contrast) and non-image-related tasks (based on global irradiance).

Oct 30, 2023

Clear holographic imaging in turbulent environments

Posted by in categories: innovation, robotics/AI

Holographic imaging has always been challenged by unpredictable distortions in dynamic environments. Traditional deep learning methods often struggle to adapt to diverse scenes due to their reliance on specific data conditions.

To tackle this problem, researchers at Zhejiang University delved into the intersection of optics and , uncovering the key role of physical priors in ensuring the alignment of data and pre-trained models.

They explored the impact of spatial and on holographic imaging and proposed an innovative method, TWC-Swin, to restore high-quality holographic images in the presence of these disturbances. Their research, titled “Harnessing the magic of light: spatial coherence instructed swin transformer for universal holographic imaging,” is reported in the journal Advanced Photonics.

Oct 30, 2023

Research claims novel algorithm can exactly compute information rate for any system

Posted by in category: information science

75 years ago Claude Shannon, the “father of information theory,” showed how information transmission can be quantified mathematically, namely via the so-called information transmission rate.

Yet, until now this quantity could only be computed approximately. AMOLF researchers Manuel Reinhardt and Pieter Rein ten Wolde, together with a collaborator from Vienna, have now developed a simulation technique that—for the first time—makes it possible to compute the information rate exactly for any system. The researchers have published their results in the journal Physical Review X.

To calculate the information rate exactly, the AMOLF researchers developed a novel simulation algorithm. It works by representing a complex physical system as an interconnected network that transmits the information via connections between its nodes. The researchers hypothesized that by looking at all the different paths the information can take through this network, it should be possible to obtain the information rate exactly.

Oct 30, 2023

First-ever wireless device developed to make magnetism appear in non-magnetic materials

Posted by in categories: biotech/medical, computing

Researchers at the UAB and ICMAB have succeeded in bringing wireless technology to the fundamental level of magnetic devices. The emergence and control of magnetic properties in cobalt nitride layers (initially non-magnetic) by voltage, without connecting the sample to electrical wiring, represents a paradigm shift that can facilitate the creation of magnetic nanorobots for biomedicine and computing systems where basic information management processes do not require wiring.

The study was recently published in the latest issue of Nature Communications.

Electronic devices rely on manipulating the electrical and magnetic properties of components, whether for computing or storing information, among other processes. Controlling magnetism using voltage instead of has become a very important control method to improve in many devices, since currents heat up circuits. In recent years, much research has been carried out to implement protocols for applying voltages to carry out this control, but always through directly on the materials.

Oct 30, 2023

Webb Telescope sees explosion 1 million times brighter than the Milky Way

Posted by in categories: cosmology, physics

This particular burst, called GRB 230307A, was likely created when two neutron stars — the incredibly dense remnants of stars after a supernova — merged in a galaxy about one billion light-years away. In addition to releasing the gamma-ray burst, the merger created a kilonova, a rare explosion that occurs when a neutron star merges with another neutron star or a black hole, according to a study published Wednesday in the journal Nature.

The Space Telescope Science Institute in Baltimore is the mission operations center for the telescope. It launched last in 2021 from French Guiana.

“There are only a mere handful of known kilonovas, and this is the first time we have been able to look at the aftermath of a kilonova with the James Webb Space Telescope,” said lead study author Andrew Levan, astrophysics professor at Radboud University in the Netherlands. Levan was also part of the team that made the first detection of a kilonova in 2013.

Oct 30, 2023

1,000+ Qubit Quantum Computer Announced

Posted by in categories: computing, particle physics, quantum physics

California-based startup Atom Computing has announced a 1,225-qubit quantum computer, the first to break the 1,000+ barrier, which it plans to release in 2024.

Quantum bits, or qubits, are the basic units of information in quantum computing – equivalent to bits in classical computing. Unlike bits, however, qubits can exist in multiple states simultaneously, allowing them to perform calculations that would take millions of years for an ordinary computer.

Oct 30, 2023

A physics milestone: Miniature particle accelerator works

Posted by in categories: biotech/medical, nanotechnology

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky.

Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that really have increased in speed significantly. A team of laser physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now succeeded in demonstrating the first nanophotonic electron —at the same time as colleagues from Stanford University. The researchers from FAU have now published their findings in the journal Nature.

When people hear “particle accelerator,” most will probably think of the Large Hadron Collider in Geneva, the approximately 27 kilometer long ring-shaped tunnel which researchers from around the globe used to conduct research into unknown elementary particles. Such huge are the exception, however. We are more likely to encounter them in other places in our day to day lives, for example in medical imaging procedures or during radiation to treat tumors.

Oct 30, 2023

Gene Transfer Leads to Longer Life and Healthspan

Posted by in categories: biotech/medical, genetics, life extension

The naked mole rat won’t win any beauty contests, but it could possibly win in the talent category. Its superpower: fighting the aging process to live several times longer than other animals its size, in a state of youthful vigor.

It’s believed that naked mole rats experience all the normal processes of wear and tear over their lifespan, but that they’re exceptionally good at repairing the damage from oxygen free radicals and the DNA errors that accumulate over time. Even though they possess genes that make them vulnerable to cancer, they rarely develop the disease, or any other age-related disease, for that matter. Naked mole rats are known to live for over 40 years without any signs of aging, whereas mice live on average about two years and are highly prone to cancer.

Now, these remarkable animals may be able to share their superpower with other species. In August, a study provided what may be the first proof-of-principle that genetic material transferred from one species can increase both longevity and healthspan in a recipient animal.

Oct 30, 2023

Considerations in the Care of Athletes With Type 1 Diabetes Mellitus

Posted by in categories: biotech/medical, health

Exercise offers benefits for those with type 1 diabetes, but needs careful blood glucose management. Anaerobic & aerobic exercise cause different responses-optimize nutrition, insulin dosing & monitoring to reach target ranges & reduce dysglycemia risk.


Type 1 diabetes mellitus is an autoimmune disease caused by affected individuals’ autoimmune response to their own pancreatic beta-cell. It affects millions of people worldwide. Exercise has numerous health and social benefits for patients with type 1 diabetes mellitus; however, careful management of blood glucose is crucial to minimize the risk of hypoglycemia and hyperglycemia. Anaerobic and aerobic exercises cause different glycemic responses during and after exercise, each of which will affect athletes’ ability to reach their target blood glucose ranges. The optimization of the patient’s macronutrient consumption, especially carbohydrates, the dosage of basal and short-acting insulin, and the frequent monitoring of blood glucose, will enable athletes to perform at peak levels while reducing their risk of dysglycemia. Despite best efforts, hypoglycemia can occur.

Oct 30, 2023

An AI approach to treating diabetes

Posted by in categories: biotech/medical, health, robotics/AI

Startup Twin Health is developing a program that uses sensor data to construct a replica of a person’s metabolism and then simulate virtual interventions on the body. The simulations suggest non-drug recommendations that help reverse metabolic disorders such as diabetes.

FOLLOW US
- Subscribe to ZDNet on YouTube: http://bit.ly/2HzQmyf.
- Watch more ZDNet videos: http://zd.net/2Hzw9Zy.
- Follow ZDNet on Twitter: https://twitter.com/ZDNet.
- Follow ZDNet on Facebook: https://www.facebook.com/ZDNet.
- Follow ZDNet on Instagram: https://www.instagram.com/ZDNet_CBSi.
- Follow ZDNet on LinkedIn: https://www.linkedin.com/company/zdnet-com/
- Follow ZDNet on Snapchat: https://www.snapchat.com/add/zdnet_cbsi