Menu

Blog

Page 1090

Nov 3, 2023

3D printers learn to paint like Jackson Pollock

Posted by in categories: 4D printing, media & arts, physics, robotics/AI

If you’ve ever drizzled honey on a piece of toast, you’ve noticed how the amber liquid folds and coils in on itself as it hits the toast. The same thing can happen with 3D and 4D printing if the print nozzle is too far from the printing substrate. Harvard scientists have taken a page from the innovative methods of abstract expressionist artist Jackson Pollock —aka the “splatter master”—to exploit the underlying physics rather than try to control it to significantly speed up the process, according to a new paper published in the journal Soft Matter. With the help of machine learning, the authors were able to decorate a cookie with chocolate syrup to demonstrate the viability of their new approach.

As reported previously, Pollock early on employed a “flying filament” or “flying catenary” technique before he perfected his dripping methods. The paint forms various viscous filaments that are thrown against a vertical canvas. The dripping technique involved laying a canvas flat on the floor and then pouring paint on top of it. Sometimes, he poured it directly from a can; sometimes he used a stick, knife, or brush; and sometimes he used a syringe. The artist usually “rhythmically” moved around the canvas as he worked. His style has long fascinated physicists, as evidenced by the controversy surrounding the question of whether or not Pollock’s paintings show evidence of fractal patterns.

Back in 2011, Harvard mathematician Lakshminarayanan Mahadevan collaborated with art historian Claude Cernuschi on an article for Physics Today examining Pollock’s use of a “coiling instability” in his paintings. The study mathematically describes how a viscous fluid folds onto itself like a coiling rope—just like pouring cold maple syrup on pancakes.

Nov 3, 2023

Natural killer cells now have a better shot at destroying cancer

Posted by in categories: 3D printing, biotech/medical

Researchers in South Korea developed a technique for encapsulating NK cells in a hydrogel that could be 3D printed into a porous shape and later implanted at the site of a removed tumor.⁠.


A new 3D-printing-based approach could unleash a cutting-edge immunotherapy against solid tumors, which account for 90% of all cancers.

Natural killers: Some immune system cells only know to attack a threat if they’ve encountered it at least once before (or been instructed to attack it by other cells that have). Natural killer (NK) cells, however, can recognize diseased cells the first time they cross paths with them — and then alert other members of the immune system, too.

Continue reading “Natural killer cells now have a better shot at destroying cancer” »

Nov 3, 2023

Starlink: I was tracking down why the bots on my home machine were unable to mail me at the Lifeboat servers on Linode

Posted by in categories: internet, robotics/AI

And finally figured out that I was using Starlink and they block port 25. So my bots now use port 2,525 since other ISPs also block port 25 and I don’t want to have to deal with this again.

The interesting thing is that I had a problem with my fiber provider so I switched to Starlink and then forgot to switch back. So Starlink isn’t terrible…


High-speed internet. Available almost anywhere on Earth.

Nov 3, 2023

The total mass, number, and distribution of immune cells in the human body

Posted by in categories: biotech/medical, health

The immune system is a complex network of cells with critical functions in health and disease. However, a comprehensive census of the cells comprising the immune system is lacking. Here, we estimated the abundance of the primary immune cell types throughout all tissues in the human body. We conducted a literature survey and integrated data from multiplexed imaging and methylome-based deconvolution. We also considered cellular mass to determine the distribution of immune cells in terms of both number and total mass. Our results indicate that the immune system of a reference 73 kg man consists of 1.8 × 1012 cells (95% CI 1.5–2.3 × 1012), weighing 1.2 kg (95% CI 0.8–1.9). Lymphocytes constitute 40% of the total number of immune cells and 15% of the mass and are mainly located in the lymph nodes and spleen. Neutrophils account for similar proportions of both the number and total mass of immune cells, with most neutrophils residing in the bone marrow. Macrophages, present in most tissues, account for 10% of immune cells but contribute nearly 50% of the total cellular mass due to their large size. The quantification of immune cells within the human body presented here can serve to understand the immune function better and facilitate quantitative modeling of this vital system.

Nov 3, 2023

NASA telescope reveals 7 new planets orbiting distant star “hotter than the sun”

Posted by in category: space

Astronomers studying data from NASA’s retired Kepler space telescope discovered a new system of seven “scorching” planets orbiting a distant star that is bigger and hotter than the sun, the space agency said Thursday.

NASA described the newly found planets as “sweltering” and “bathed” in radiant heat emitted by the host star that was described as “sun-like.” That star is 10% larger and 5% “hotter than the sun,” NASA said, and there is more heat per area from that star than any planet in our solar system experiences.

All of the planets are larger than Earth, with the two inner planets just slightly larger and the other five planets even bigger, about twice the size of Earth. The inner planets are “probably rocky and may have thin atmospheres,” NASA said, while the five outer planets are expected to have thick atmospheres.

Nov 3, 2023

Researchers can now visualize osmotic pressure in living tissue

Posted by in category: biotech/medical

In order to survive, organisms must control the pressure inside them, from the single-cell level to tissues and organs. Measuring these pressures in living cells and tissues in physiological conditions is a challenge.

In research that has its origin at UC Santa Barbara, scientists now at the Cluster of Excellence Physics of Life (PoL) at the Technical University in Dresden (TU Dresden), Germany, report in the journal Nature Communications a new technique to ‘visualize’ these pressures as organisms develop. These measurements can help understand how cells and tissues survive under , and reveal how problems in regulating pressures lead to disease.

When molecules dissolved in water are separated into different compartments, water has the tendency to flow from one compartment to another to equilibrate their concentrations, a process known as osmosis. If some molecules cannot cross the membrane that separates them, a pressure imbalance—osmotic pressure—builds up between compartments.

Nov 3, 2023

Scientists identify progenitor cells that could revolutionize osteoarthritis treatment

Posted by in category: futurism

In a recent study published in Nature Communications, researchers report that osteoarthritis (OA) is caused by the loss of Gremlin 1 (Grem1)-lineage chondrogenic progenitor (CP) cells.

Study: Loss of Grem1-lineage chondrogenic progenitor cells causes osteoarthritis. Image Credit: airdone / Shutterstock.com.

Nov 3, 2023

Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

Despite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for in situ gene editing. We observed distinct LNP composition and cell-specific effects such as an extended presence of RNP in slow-cycling epithelial cells for up to 72 h. While obtaining similar gene editing rates using Cas9 RNP and mRNA with MC3-based LNPs (10–16%), mRNA-loaded LNPs proved to be more cytotoxic. Interestingly, ionizable lipids with a p Ka ∼ 7.1 yielded superior gene editing rates (55%–72%) in two-dimensional (2D) epithelial cells while no single guide RNA-dependent off-target effects were detectable. Unexpectedly, these high 2D editing efficacies did not translate to actual skin tissue where overall gene editing rates between 5%–12% were achieved after a single application and irrespective of the LNP composition. Finally, we successfully base-corrected a disease-causing mutation with an efficacy of ∼5% in autosomal recessive congenital ichthyosis patient cells, showcasing the potential of this strategy for the treatment of monogenic skin diseases. Taken together, this study demonstrates the feasibility of an in situ correction of disease-causing mutations in the skin that could provide effective treatment and potentially even a cure for rare, monogenic, and common skin diseases.

Nov 3, 2023

New blood test detects lethal cancers way before symptoms appear

Posted by in category: biotech/medical

Link :- https://interestingengineering.com/science/blood-test-detect…tent=Nov03


Angelp/iStock.

Scientists are looking for specific DNA, cells, and molecules in our body which may be cancerous. They’ve made progress in finding some of these markers in the blood, but it’s still tricky to find them accurately and affordably for routine screening.

Nov 3, 2023

Textbook knowledge turned on its head: 3-in-1 microorganism discovered

Posted by in categories: climatology, sustainability

A team of researchers has now been able to show that there is an incredibly high biodiversity of environmentally relevant microorganisms in nature. This diversity is at least 4.5 times greater than previously known. The researchers recently published their findings in the journals Nature Communications and FEMS Microbiology Reviews.

The hidden world of microorganisms is often overlooked, even though many climate-relevant processes are influenced by microorganisms, often associated with an incredible diversity of species within the groups of bacteria and archaea (“primitive bacteria”).

For example, sulfate-reducing microorganisms convert a third of the organic carbon in marine sediments into . This produces toxic hydrogen sulfide. On the positive side, sulfur-oxidizing microorganisms quickly use this as an energy source and render it harmless.