Menu

Blog

Page 1404

Oct 5, 2023

Quantum repeaters use defects in diamond to interconnect quantum systems

Posted by in categories: computing, engineering, particle physics, quantum physics

Ben Dixon, a researcher in the Optical and Quantum Communications Technology Group, explains how the process works: “First, you need to generate pairs of specific entangled qubits (called Bell states) and transmit them in different directions across the network link to two separate quantum repeaters, which capture and store these qubits. One of the quantum repeaters then does a two-qubit measurement between the transmitted and stored qubit and an arbitrary qubit that we want to send across the link in order to interconnect the remote quantum systems. The measurement results are communicated to the quantum repeater at the other end of the link; the repeater uses these results to turn the stored Bell state qubit into the arbitrary qubit. Lastly, the repeater can send the arbitrary qubit into the quantum system, thereby linking the two remote quantum systems.”

To retain the entangled states, the quantum repeater needs a way to store them — in essence, a memory. In 2020, collaborators at Harvard University demonstrated holding a qubit in a single silicon atom (trapped between two empty spaces left behind by removing two carbon atoms) in diamond. This silicon “vacancy” center in diamond is an attractive quantum memory option. Like other individual electrons, the outermost (valence) electron on the silicon atom can point either up or down, similar to a bar magnet with north and south poles. The direction that the electron points is known as its spin, and the two possible spin states, spin up or spin down, are akin to the ones and zeros used by computers to represent, process, and store information. Moreover, silicon’s valence electron can be manipulated with visible light to transfer and store a photonic qubit in the electron spin state. The Harvard researchers did exactly this; they patterned an optical waveguide (a structure that guides light in a desired direction) surrounded by a nanophotonic optical cavity to have a photon strongly interact with the silicon atom and impart its quantum state onto that atom. Collaborators at MIT then showed this basic functionality could work with multiple waveguides; they patterned eight waveguides and successfully generated silicon vacancies inside them all.

Lincoln Laboratory has since been applying quantum engineering to create a quantum memory module equipped with additional capabilities to operate as a quantum repeater. This engineering effort includes on-site custom diamond growth (with the Quantum Information and Integrated Nanosystems Group); the development of a scalable silicon-nanophotonics interposer (a chip that merges photonic and electronic functionalities) to control the silicon-vacancy qubit; and integration and packaging of the components into a system that can be cooled to the cryogenic temperatures needed for long-term memory storage. The current system has two memory modules, each capable of holding eight optical qubits.

Oct 5, 2023

Google DeepMind unites researchers in bid to create an ImageNet of robot actions

Posted by in category: robotics/AI

Of all the holy grails in robotics, learning may well be the holiest. In an era when the term “general purpose” is tossed around with great abandon, however, it can be difficult for non-roboticists to understand what today’s systems can — and can’t — do. The truth of it is that most robots these days are built to do one (or a couple, if you’re lucky) thing really well.

It’s a truth that spans the industry, from the lowliest robot vacuum to the most advanced industrial system. So, how do we make the transition from single to general purpose robotics? Certainly, there are going to be a lot of stops in multipurpose land along the way.

The answer is, of course, robot learning. Walk into nearly any robotics research lab these days and you will find teams working on tackling the issue. The same applies to startups and corporations, as well. Look at companies Viam and Intrinsic, which are working to lower the bar of entry for robot programming.

Oct 5, 2023

Advanced Quantum Material Curves the Fabric of Space

Posted by in categories: energy, quantum physics

The latest research on quantum materials and electron curves could revamp our energy-efficient electronics.

Oct 5, 2023

When Nietzsche said ‘become who you are’, this is what he meant

Posted by in category: futurism

The Renaissance sculptor Michelangelo was known for claiming that he deserved little credit for his beautiful works: they were already there inside the rock, he merely cut them out. ‘Every block of stone,’ he said, ‘has a statue inside it and it is the task of the sculptor to discover it. I saw the angel in the marble and carved until I set him free.’

The final product already existed within Michelangelo’s ideals. But it took years of trial and error, practice, and failure to reach the point of being able to give form to it. In a similar sense, Nietzsche would say the ‘you’ that you must become is already there. It’s already inscribed in your values. That which you admire – the preponderance of all your latent virtues – reflects who you are in the truest sense.

The act of becoming who you are is the act of carving your ideal self out of the hard stone of your psyche – of bringing greater and greater refinement to the crude shapes of character that exist in you now. Simultaneously an act of discovery and creation, to become who you are is to bring your virtues to life and synthesise them into a unified whole. Nietzsche proclaims:

Oct 5, 2023

Start of the Fully Fault Tolerant Age of Quantum Computers

Posted by in categories: computing, information science, quantum physics

Without full fault tolerance in quantum computers we will never practically get past 100 qubits but full fault tolerance will eventually open up the possibility of billions of qubits and beyond. In a Wright Brothers Kittyhawk moment for Quantum Computing, a fully fault-tolerant algorithm was executed on real qubits. They were only three qubits but this was never done on real qubits before.

This is the start of the fully fault tolerant age of quantum computers. For quantum computers to be the real deal of unlimited computing disruption then we needed full fault tolerance on real qubits.

Oct 5, 2023

“Unusual” Findings Overturn Current Battery Wisdom

Posted by in categories: innovation, materials

Scientists have made a significant breakthrough in understanding and overcoming the challenges associated with Ni-rich cathode materials used in lithium-ion batteries.

While these materials can reach high voltages and capacities, their real-world usage has been limited by structural issues and oxygen depletion.

Their study revealed that ‘oxygen hole’ formation – where an oxygen ion loses an electron — plays a crucial role in the degradation of LiNiO2 cathodes accelerating the release of oxygen which can then further degrade the cathode material.

Oct 5, 2023

Impact of genes linked to neurodevelopmental diseases found

Posted by in categories: biotech/medical, neuroscience

Combining two cutting-edge technologies, researchers revealed the impact of a multitude of genes that are associated with neurodevelopmental disorders, including autism, but whose effects on human brain development were previously unknown.

Oct 5, 2023

You can now use the DALL-E 3 AI image generator inside Bing Chat

Posted by in category: robotics/AI

The image generator inside the AI-powered Bing Chat is getting a big upgrade today: Microsoft announced that OpenAI’s latest DALL-E 3 model is now available to all Bing Chat and Bing Image Creator users. It has been rolling out over the last week or so, first to Bing Enterprise users and then to Bing Image Creator, but now it’s open to everyone.

Bing is getting DALL-E 3 access even before OpenAI’s own ChatGPT does — that’s scheduled to happen this month, but only for paying users. Microsoft is likely to be the most popular image generating tool for a while.

“Microsoft is planning to use DALL-E tech in more than just Bing, too. It’s working on an AI image creation tool in the Paint app called Paint Cocreator, for instance, which will bring the DALL-E model right into Windows.”

Continue reading “You can now use the DALL-E 3 AI image generator inside Bing Chat” »

Oct 5, 2023

KKAA YTAA splits Japanese house in two with central courtyard

Posted by in category: habitats

Architecture studio KKAA YTAA has completed a home with a central courtyard named House in Front of a School in Nara, Japan.

Located in the densely populated capital of Japan’s Nara Prefecture, the house was split into two parts that are connected by a bridge across a central courtyard.

The unusual arrangement was created as the client wanted a space that supported their work-from-home lifestyle and gave them access to the outdoors.

Oct 5, 2023

There’s a new squishy robot in town, and it’s created by AI

Posted by in category: robotics/AI

Northwestern University.

Like Flubber, the robot can’t bolt and strike against walls at lightning speeds – but it can walk. The mechanism of the robot, written by the AI system, works when air is pumped into its body. The rubbery robot’s legs contract, and continually pumping air into the robot causes it to slowly but steadily locomote.