Menu

Blog

Page 843

Dec 20, 2023

New nuclear deflection simulations advance planetary defense against asteroid threats

Posted by in categories: asteroid/comet impacts, existential risks

Researchers at Lawrence Livermore National Laboratory (LLNL) have developed a modeling tool for assessing the potential use of a nuclear device to defend the planet against catastrophic asteroid impacts.

The research, published today in the Planetary Science Journal, introduces a novel approach to simulating the from a nuclear device on an asteroid’s surface. This new tool improves our understanding of the nuclear deflection’s radiation interactions on the asteroid’s surface while opening the door to new research on the shockwave dynamics affecting the inner asteroid.

This model will allow researchers to build upon the insights gained from NASA’s recent Double Asteroid Redirection Test (DART) mission, where, in Sept. 2022, a kinetic impactor was deliberately crashed into an asteroid to alter its trajectory. However, with limitations in the mass that can be lifted to space, scientists continue to explore nuclear deflection as a viable alternative to kinetic impact missions.

Dec 20, 2023

Orange tabby cat named Taters steals the show in first video sent by laser from deep space

Posted by in categories: internet, space

CAPE CANAVERAL, Fla. (AP) — An orange tabby cat named Taters stars in the first video transmitted by laser from deep space, stealing the show as he chases a red laser light.

The 15-second video was beamed to Earth from NASA’s Psyche spacecraft, 19 million miles (30 million kilometers) away. It took less than two minutes for the ultra high-definition video to reach Caltech’s Palomar Observatory, sent at the test system’s maximum rate of 267 megabits per second.

The video was loaded into Psyche’s laser communication experiment before the spacecraft blasted off to a rare metal asteroid in October. The mission team at NASA’s Jet Propulsion Laboratory in Pasadena, California, decided to feature an employee’s 3-year-old playful kitty.

Dec 19, 2023

Brain and body are more intertwined than we knew

Posted by in category: neuroscience

The interconnectedness of brain and body has tantalizing implications for our ability to both understand and treat illness.


A host of disorders once thought to be nothing to do with the brain are, in fact, tightly coupled to nervous-system activity.

Dec 19, 2023

IBM’s Quantum System Two will help it unlock the ‘full power of quantum computing’

Posted by in categories: chemistry, computing, quantum physics

“Even now, quantum systems can serve as scientific tools,” Oliver Dial, IBM Quantum CTO told IE in an interview. Quantum utility might already be here, but will we soon see a company achieve quantum advantage?


But what exactly does that mean?

Continue reading “IBM’s Quantum System Two will help it unlock the ‘full power of quantum computing’” »

Dec 19, 2023

Intermittent fasting spurs proliferation of liver cells in lab mice, Stanford Medicine-led study finds

Posted by in category: biotech/medical

A study led by researchers at Stanford Medicine questions the long-held belief that adult liver cells rarely divide:


Cells in the adult liver were thought to divide rarely. But a study led by Stanford Medicine researchers found intermittent fasting causes rapid cell division.

Dec 19, 2023

Timing is everything: How circadian rhythms influence our brains

Posted by in categories: biotech/medical, neuroscience

Why are we mentally sharper at certain times of day? A study led by Jonathan Lipton MD, Ph.D., at Boston Children’s Hospital spells out the relationship between circadian rhythms—the body’s natural day/night cycles—and the brain connections known as synapses.

The work is the first to provide a cellular and molecular explanation for natural fluctuations over the day in alertness, cognition, and the ability to learn and remember.

“We have known for more than a century that the time of day influences cognition and memory, but until now the mechanisms have been elusive,” says Lipton, a sleep physician in the Department of Neurology and researcher in the F.M. Kirby Neurobiology Center.

Dec 19, 2023

A breakthrough by scientists has taken a huge step towards allowing us to create truly artificial DNA

Posted by in categories: biotech/medical, chemistry, genetics

DNA is the building block of life, and the genetic alphabet comprises just four letters or nucleotides. These biochemical building blocks comprise all types of DNA, and scientists have long wondered whether creating working artificial DNA would be possible. Now, a breakthrough may finally provide the answer.

The main goal of a new study, the findings of which were published in Nature Communications this month, shows that scientists may finally be able to create new medicines for certain diseases by creating DNA with new nucleotides that can create custom proteins.

Being able to create artificial DNA could open the door for several important uses. Being able to expand the genetic code could very well diversify the “range of molecules we can synthesize in the lab,” the study’s senior author Dong Wang, Ph.D., explained (via Phys.org).

Dec 19, 2023

Improving a robot’s self-awareness by giving it proprioception

Posted by in category: robotics/AI

A pair of roboticists at the Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, in Germany, has found that it is possible to give robots some degree of proprioception using machine-learning techniques. In their study reported in the journal Science Robotics, Fernando Díaz Ledezma and Sami Haddadin developed a new machine-learning approach to allow a robot to learn the specifics of its body.

Giving robots the ability to move around in the real world involves fitting them with technology such as cameras and —data from such devices is then processed and used to direct the legs and/or feet to carry out appropriate actions. This is vastly different from the way animals, including humans, get the job done.

Continue reading “Improving a robot’s self-awareness by giving it proprioception” »

Dec 19, 2023

James Webb Space Telescope may have found the oldest black hole in the universe

Posted by in category: cosmology

The James Webb Space Telescope (JWST) has spotted the oldest black hole ever seen, an ancient monster with the mass of 1.6 million suns lurking 13 billion years in the universe’s past.

The James Webb Space Telescope, whose cameras enable it to look back in time to our universe’s beginnings, spotted the supermassive black hole at the center of the infant galaxy GN-z11 just 440 million years after the universe began.

Dec 19, 2023

Chinese Experiments Show Near Room Temperature Superconducting Evidence for LK99

Posted by in categories: energy, materials

South China University of Technology and Central South University published a paper confirming the discovery of a near-room-temperature superconducting component in LK99-type materials through sample testing. This is significant experimental support for LK99 room temperature superconductivity.

They have found significant hysteresis and memory effect of LFMA in samples of CSLA. The effect is sufficiently robust in magnetic field sweep and rotation and will lose memory in a long duration. The temperature dependence of LFMA intensity exhibits a phase transition at 250 K. The phase diagram of superconducting Meissner and vortex glass is then calculated in the framework of lattice gauge model. In the near future, they will continue to improve the quality of samples to realize full levitation and magnetic flux pinning by increasing active components. The application of a microwave power repository will be considered as well.

Most superconductors have got the low-field microwave absorption (LFMA) due to the presence of superconducting gap and the relevant superconducting vortices as excited states. More importantly, the derivative LFMA of superconductors is positively dependent of the magnetic field as the vortices are more induced under higher field. As a comparison, although the soft magnetism is also active under low field, the precession of spin moments will be suppressed so that the derivative LFMA of magnetic materials is normally negative. The sign of LFMA can be always corrected by the signal of radicals in our measurements. In this case, the signals below 500 Gauss are all positive, implying the presence of superconductivity.

Page 843 of 11,078First840841842843844845846847Last