Menu

Blog

Page 1577

Aug 7, 2023

Boron nitride-based nanocomposites have unexpected properties, researchers discover

Posted by in categories: computing, quantum physics

Just as carbon makes up both the brittle core of a No. 2 pencil and the harder-than-steel diamond in a cutting tool, boron nitride gives rise to compounds that can be soft or hard. Yet, unlike carbon, far less is known about boron nitride’s forms and their responses to changing temperatures and pressures.

Rice University scientists mixed —a soft variety also known as “white graphite”—with cubic boron nitride—a material second to diamond in hardness—and found that the resulting nanocomposite interacted with light and heat in unexpected ways that could be useful in next-generation microchips, quantum devices and other advanced technology applications.

“Hexagonal boron nitride is widely used in a variety of products, such as coatings, lubricants and cosmetics,” said Abhijit Biswas, a research scientist who is the lead author of a study about the research published in Nano Letters. “It’s quite soft and it is a great lubricant, and very lightweight. It’s also cheap and very stable at room temperature and under atmospheric pressure.

Aug 7, 2023

Australian military is funding a computer chip merged with human brain cells

Posted by in categories: biotech/medical, computing, military, neuroscience

This article is an installment of Future Explored, a weekly guide to world-changing technology. You can get stories like this one straight to your inbox every Thursday morning by subscribing here.

The Australian military is funding a project to grow intelligent “mini-brains” in petri dishes. The goal is to use these “DishBrains” to design better AIs — and, eventually, even combine the two, creating AIs merged with processing features of human brain cells.

Continue reading “Australian military is funding a computer chip merged with human brain cells” »

Aug 7, 2023

Scientists observe first evidence of ‘quantum superchemistry’ in the laboratory

Posted by in categories: chemistry, particle physics, quantum physics

A team from the University of Chicago has announced the first evidence for “quantum superchemistry”—a phenomenon where particles in the same quantum state undergo collective accelerated reactions. The effect had been predicted, but never observed in the laboratory.

Aug 7, 2023

Japan’s prime minister warns of Russia’s ‘nuclear threat’

Posted by in category: military

Japanese Prime Minister Fumio Kishida warned of Russia’s nuclear threat and reaffirmed a pledge to work to make the world free of nuclear weapons in a speech marking 78 years since the atomic bomb fell on Hiroshima on Sunday. “As the only country to have experienced the horror of nuclear devastation in war, Japan will press on tirelessly with its efforts to bring about ‘a world without nuclear weapons,’” Kishida said in remarks delivered in Hiroshima, in a tribute to the victims, their families and those still suffering aftereffects of the bomb.

Aug 7, 2023

Do We Need a NEW Dark Matter Model?

Posted by in categories: cosmology, particle physics

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Continue reading “Do We Need a NEW Dark Matter Model?” »

Aug 7, 2023

Nanorings: New building blocks for chemistry

Posted by in categories: chemistry, nanotechnology, particle physics

Sandwich compounds are special chemical compounds used as basic building blocks in organometallic chemistry. So far, their structure has always been linear.

Recently, researchers of Karlsruhe Institute of Technology (KIT) and the University of Marburg were the first to make stacked sandwich complexes form a nano-sized ring. Physical and other properties of these cyclocene structures will now be further investigated. The researchers report their findings in Nature.

Sandwich complexes were developed about 70 years ago and have a sandwich-like structure. Two flat aromatic organic rings (the “slices of bread”) are filled with a single, central metal atom in between. Like the slices of bread, both rings are arranged in parallel. Adding further layers of “bread” and “filling” produces triple or multiple sandwiches.

Aug 7, 2023

Nanopore technology achieves breakthrough in protein variant detection

Posted by in categories: biotech/medical, chemistry

A team of scientists led by the University of Oxford have achieved a significant breakthrough in detecting modifications on protein structures. The method, published in Nature Nanotechnology, employs innovative nanopore technology to identify structural variations at the single-molecule level, even deep within long protein chains.

Human cells contain approximately 20,000 -encoding genes. However, the actual number of proteins observed in cells is far greater, with over 1,000,000 different structures known. These variants are generated through a process known as post-translational modification (PTM), which occurs after a protein has been transcribed from DNA.

PTM introduces structural changes such as the addition of chemical groups or carbohydrate chains to the individual amino acids that make up proteins. This results in hundreds of possible variations for the same protein chain.

Aug 7, 2023

Research team achieves near-perfect light absorption in atomic-scale material

Posted by in categories: internet, materials

A University of Minnesota-led team has, for the first time, engineered an atomically thin material that can absorb nearly 100% of light at room temperature, a discovery that could improve a wide range of applications from optical communications to stealth technology. Their paper has been published in Nature Communications.

Materials that absorb nearly all of the —meaning not a lot of light passes through or reflects off of them—are valuable for applications that involve detecting or controlling light.

“Optical communications are used in basically everything we do,” said Steven Koester, a professor in the College of Science and Engineering and a senior author of the paper. “The internet, for example, has optical detectors connecting fiber optic links. This research has the potential to allow these to be done at higher speeds and with greater efficiency.”

Aug 7, 2023

Mayo Clinic Q and A: What is cardiac arrest?

Posted by in categories: biotech/medical, neuroscience

DEAR MAYO CLINIC: I’ve heard about several people who have experienced sudden cardiac arrest. What is cardiac arrest? And how is it different from a heart attack? What do you do for someone who has this condition?

ANSWER: Cardiac arrest, or sudden cardiac arrest as it is more formally known, is a medical emergency. Think of it as a problem with the heart’s electrical activity. This synchronized electrical activity allows the heart to fill and pump blood normally. Sudden cardiac arrest can happen unexpectedly and quickly, and the heart stops working. It’s not the same as a heart attack, but it is just as critical that treatment occurs rapidly.

Cardiac arrest is when the heart cannot fulfill its duties, such as pumping oxygenated blood around the body to reach critical areas such as the brain and the rest of the body. It is sometimes called “sudden” because it seems to happen without warning. A person suddenly loses all heart activity, stops breathing and becomes unconscious. Without immediate treatment, sudden cardiac arrest can lead to death.

Aug 7, 2023

New method to identify mutations in childhood brain tumors

Posted by in categories: biotech/medical, neuroscience

Researchers at Uppsala university have developed a new method to find mutations in brain tumors in children. They also showed that the mutations change how cancer cells respond to a cancer drug. These findings could lead to better diagnostics and more individualized treatment of children with brain tumors. The study is published in the journal Proceedings of the National Academy of Sciences.

Medulloblastoma is the most common malignant brain tumor in children. It usually develops in the cerebellum and although modern treatment has improved the prognosis so that more than 70% of patients now live more than five years, not all patients can be cured. The aggressive treatment also causes such as balance problems and impaired learning abilities in cancer survivors.

Numerous studies have explored the less than 2% of human DNA that gives rise to proteins, and much less is known about the rest of the . In a cancer, such as medulloblastoma, 98% of the mutations thus occur in the less studied part of the genome. There could be thousands of mutations, and it is difficult to separate the ones driving the cancer from those without importance.