Menu

Blog

Page 150

Apr 4, 2024

Study reveals that the brain’s cerebellum can shape cognition

Posted by in categories: biotech/medical, neuroscience

If you reward a monkey with some juice, it will learn which hand to move in response to a specific visual cue—but only if the cerebellum is functioning properly. So say neuroscientists at the University of Pittsburgh School of Medicine and Columbia University, who recently published findings in Nature Communications that show the brain region plays a crucial role in reward-based learning.

Apr 4, 2024

Unlocking exotic physics: Exploring graphene’s topological bands in super-moiré structures

Posted by in categories: materials, physics

In a new study, scientists from Singapore and Spain have presented a new avenue for exploring exotic physics in graphene. They focus on electronic interactions in graphene when it is sandwiched in a three-layer structure which provides a platform to exploit unique electronic band configurations.

Apr 4, 2024

New focused approach can help untangle messy quantum scrambling problems

Posted by in categories: media & arts, quantum physics

The world is a cluttered, noisy place, and the ability to effectively focus is a valuable skill. For example, at a bustling party, the clatter of cutlery, the conversations, the music, the scratching of your shirt tag and almost everything else must fade into the background for you to focus on finding familiar faces or giving the person next to you your undivided attention.

Apr 4, 2024

‘It’s ultimately about predicting everything’—theory could be a map in the hunt for quantum materials

Posted by in categories: particle physics, quantum physics

A breakthrough in theoretical physics is an important step toward predicting the behavior of the fundamental matter of which our world is built. It can be used to calculate systems of enormous quantities of quantum particles, a feat thought impossible before.

Apr 4, 2024

Advancements in Deep Ultraviolet Laser Technology

Posted by in category: futurism

Researchers developed a 60-milliwatt solid-state DUV laser at 193 nm using LBO crystals, setting new benchmarks in efficiency values.

In the realm of science and technology, harnessing coherent light sources in the deep ultraviolet (DUV) region holds immense significance across various applications such as lithography, defect inspection, metrology, and spectroscopy. Traditionally, high-power 193-nanometer (nm) lasers have been pivotal in lithography, forming an integral part of systems used for precise patterning. However, the coherence limitations associated with conventional ArF excimer lasers hinder their effectiveness in applications requiring high-resolution patterns, like interference lithography.

Hybrid ArF Excimer Laser Technology

Apr 4, 2024

Unlocking the Secrets of Strength Through 3D Crack Analysis

Posted by in categories: engineering, materials

The last time you dropped a favorite mug or sat on your glasses, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering. They aim to understand how cracks propagate in brittle solids, which is essential for developing and testing safe and cost-effective composite materials for use in construction, sports, and aerospace engineering.

Apr 4, 2024

Electrically Tunable Metasurfaces: Liquid Crystal Alignment by Dielectric Meta-Atoms

Posted by in categories: materials, particle physics

Dielectric metasurfaces, known for their low loss and subwavelength scale, are revolutionizing optical systems by allowing multidimensional light modulation. Researchers have now innovated in this field by developing a liquid crystal-based dielectric metasurface that streamlines manufacturing and enhances device performance.

Dielectric metasurfaces represent one of the cutting-edge research and application directions in the current optical field. They not only possess the advantage of low loss but also enable the realization of device thicknesses at subwavelength scales. Moreover, they can freely modulate light in multiple dimensions such as amplitude, phase, and polarization. This capability, which traditional optics lacks, holds significant importance for the integration, miniaturization, and scaling of future optical systems. Consequently, dielectric metasurfaces have attracted increasing industrial attention.

In this study, Professor Daping Chu’s team at the University of Cambridge developed a novel liquid crystal-based tunable dielectric metasurface. By leveraging the dielectric metasurface’s inherent alignment effect on liquid crystals on top of its electrically controllable properties, the need for liquid crystal alignment layer materials and related processes is eliminated, thus saving device manufacturing time and costs. This has practical implications for devices such as liquid crystal on silicon (LCoS).

Apr 4, 2024

Redefining Quantum Communication: Researchers Have Solved a Foundational Problem in Transmitting Quantum Information

Posted by in categories: nanotechnology, quantum physics

Quantum electronics represents a significant departure from conventional electronics. In traditional systems, memory is stored in binary digits. In contrast, quantum electronics utilizes qubits for storage, which can assume various forms, including electrons trapped in nanostructures known as quantum dots. Nonetheless, the ability to transmit information beyond the adjacent quantum dot poses a substantial challenge, thereby limiting the design possibilities for qubits.

Now, in a study recently published in Physical Review Letters, researchers from the Institute of Industrial Science at the University of Tokyo are solving this problem: they developed a new technology for transmitting quantum information over perhaps tens to a hundred micrometers. This advance could improve the functionality of upcoming quantum electronics.

Apr 4, 2024

Revolutionizing Tech With a Simple Equation: New Predictive Tool Will Speed Up Battery and Superconductor Research

Posted by in categories: chemistry, energy, information science

The performance of numerous cutting-edge technologies, from lithium-ion batteries to the next wave of superconductors, hinges on a physical characteristic called intercalation. Predicting which intercalated materials will be stable poses a significant challenge, leading to extensive trial-and-error experimentation in the development of new products.

Now, in a study recently published in ACS Physical Chemistry Au, researchers from the Institute of Industrial Science, The University of Tokyo, and collaborating partners have devised a straightforward equation that correctly predicts the stability of intercalated materials. The systematic design guidelines enabled by this work will speed up the development of upcoming high-performance electronics and energy-storage devices.

Apr 4, 2024

Error-corrected qubits 800 times more reliable after breakthrough, paving the way for ‘next level’ of quantum computing

Posted by in categories: computing, quantum physics

Scientists used a technique called ‘active syndrome extraction’ to build four logical qubits from 30 physical ones and run 14,000 experiments without detecting a single error.

Page 150 of 11,080First147148149150151152153154Last