Menu

Blog

Archive for the ‘particle physics’ category: Page 500

Sep 27, 2016

A Primer for Deterministic Thermodynamics and Cryodynamics

Posted by in categories: engineering, existential risks, general relativity, particle physics, philosophy, quantum physics

A Primer for Deterministic Thermodynamics and Cryodynamics

Dedicated to the Founder of Synergetics, Hermann Haken

Otto E. Rossler, Frank Kuske, Dieter Fröhlich, Hans H. Diebner, Thimo Bo¨ hl, Demetris T. Christopoulos, Christophe Letellier

Abstract The basic laws of deterministic many-body systems are summarized in the footsteps of the deterministic approach pioneered by Yakov Sinai. Two fundamental cases, repulsive and attractive, are distinguished. To facilitate comparison, long-range potentials are assumed both in the repulsive case and in the new attractive case. In Part I, thermodynamics – including the thermodynamics of irreversible processes along with chemical and biological evolution – is presented without paying special attention to the ad hoc constraint of long-range repulsion.Otto E. Rossler In Part II, the recently established new fundamental discipline of cryodynamics, based on long-range attraction, is described in a parallel format. In Part III finally, the combination (“dilute hot-plasma dynamics”) is described as a composite third sister discipline with its still largely unknown properties. The latter include the prediction of a paradoxical “double-temperature equilibrium” or at least quasi-equilibrium existing which has a promising technological application in the proposed interactive local control of hot-plasma fusion reactors. The discussion section puts everything into a larger perspective which even touches on cosmology.
Keywords: Sinai gas, chaos theory, heat death, dissipative structures, second arrow, Point Omega, Super Life, paradoxical cooling, antifriction, paradoxical acceleration, Sonnleitner numerical instability, dilute-plasma paradigm, two-temperature equilibrium, ITER, MHD, interactive plasma cooling, McGuire reactor, Hubble law, Zwicky rehabilitated, Perlmutter-Schmidt-Riess wiggle, mean cosmic temperature, van Helmont, Lavoisier, Kant, Poincaré, double-faced Sonnleitner map. (August 26, 2016)

Continue reading “A Primer for Deterministic Thermodynamics and Cryodynamics” »

Sep 27, 2016

Creating antimatter via lasers?

Posted by in categories: particle physics, quantum physics

Now, intriguing calculations from a research team at the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and reported this week in Physics of Plasmas, from AIP Publishing, explain the production and dynamics of electrons and positrons from ultrahigh-intensity laser-matter interactions. In other words: They’ve calculated how to create matter and antimatter via lasers.

Strong electric fields cause electrons to undergo huge radiation losses because a significant amount of their energy is converted into gamma rays — high-energy photons, which are the particles that make up light. The high-energy photons produced by this process interact with the strong laser field and create electron-positron pairs. As a result, a new state of matter emerges: strongly interacting particles, optical fields, and gamma radiation, whose dynamics are governed by the interplay between classical physics phenomena and quantum processes.

A key concept behind the team’s work is based on the quantum electrodynamics (QED) prediction that “a strong electric field can, generally speaking, ‘boil the vacuum,’ which is full of ‘virtual particles,’ such as electron-positron pairs,” explained Igor Kostyukov of IAP RAS. “The field can convert these types of particles from a virtual state, in which the particles aren’t directly observable, to a real one.”

Read more

Sep 27, 2016

Quantum computing advances with control of entanglement

Posted by in categories: computing, particle physics, quantum physics

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there was one big catch: Tiny-scale quantum effects fall apart too easily to be practical for reliably powering computers.

Now, a team of scientists in Japan may have overcome this obstacle. Using laser light, they have developed a precise, continuous control technology giving 60 times more success than previous efforts in sustaining the lifetime of “qubits,” the unit that quantum computers encode. In particular, the researchers have shown that they can continue to create a known as the entangled state—entangling more than one million different physical systems, a world record that was only limited in their investigation by data storage space.

This feat is important because entangled quantum particles, such as atoms, electrons and photons, are a resource of created by the behaviors that emerge at the tiny quantum scale. Harnessing them ushers in a new era of information technology. From such behaviors as superposition and entanglement, quantum particles can perform enormous calculations simultaneously. The report of their investigation appears this week in the journal APL Photonics.

Read more

Sep 26, 2016

Lawrence Krauss Versus Freeman Dyson on Gravitons

Posted by in categories: alien life, engineering, genetics, particle physics, quantum physics, robotics/AI, space travel

Yesterday, in the New York Review of Books, Freeman Dyson analyzed a trio of recent books on humanity’s future in the larger cosmos. They were How to Make a Spaceship: A Band of Renegades, an Epic Space Race, and the Birth of Private Spaceflight; Beyond Earth: Our Path to a New Home in the Planets; and All These Worlds Are Yours: The Scientific Search for Alien Life.

Dyson is “a brilliant physicist and contrarian,” as the theoretical astrophysicist Lawrence Krauss recently told Nautilus. So I was waiting, as I read his review, to come across his profound and provocative pronouncement about these books, and it came soon enough: “None of them looks at space as a transforming force in the destiny of our species,” he writes. The books are limited in scope by looking at the future of space as a problem of engineering. Dyson has a grander vision. Future humans can seed remote environments with genetic instructions for countless new species. “The purpose is no longer to explore space with unmanned or manned missions, but to expand the domain of life from one small planet to the universe.”

Dyson can be just as final in his opinions on the destiny of scientific investigation. According to Krauss, Dyson once told him, “There’s no way we’re ever going to measure gravitons”—the supposed quantum particles underlying gravitational forces—“because there’s no terrestrial experiment that could ever measure a single graviton.” Dyson told Krauss that, in order to measure one, “you’d have to make the experiment so massive that it would actually collapse to form a black hole before you could make the measurement.” So, Dyson concluded, “There’s no way that we’ll know whether gravity is a quantum theory.”

Continue reading “Lawrence Krauss Versus Freeman Dyson on Gravitons” »

Sep 26, 2016

Wonders of Creation: Scientists Use Quantum Mechanics to Teleport Particle 4 Miles

Posted by in categories: computing, particle physics, quantum physics

Scientists at the University of Calgary successfully teleported a particle nearly four miles away in a breakthrough experiment that could revolutionize the way computers function.

Researchers used the entanglement property of quantum mechanics, known as “spooky action at a distance,” to teleport a particle. It’s a scientific property not even the renowned Albert Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” Dr. Wolfgang Tittel, a physics professor at the University of Calgary who was involved in the research, said in a press statement. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary. What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres [slightly less than 4 miles] away at the university.”

Continue reading “Wonders of Creation: Scientists Use Quantum Mechanics to Teleport Particle 4 Miles” »

Sep 26, 2016

MIT: Powering up graphene implants without frying cells ~ For the Next Generation of Implants

Posted by in categories: biotech/medical, health, nanotechnology, particle physics

This computational illustration shows a graphene network structure below a layer of water.

Image: Zhao Qin

New analysis finds way to safely conduct heat from graphene to biological tissues.

Continue reading “MIT: Powering up graphene implants without frying cells ~ For the Next Generation of Implants” »

Sep 25, 2016

What if spacetime were a kind of fluid?

Posted by in categories: particle physics, quantum physics

This is the question tackled by theoretical physicists working on quantum gravity by creating models attempting to reconcile gravity and quantum mechanics.

Some of these models predict that spacetime at the Planck scale (10^-33cm) is no longer continuous — as held by classical physics — but discrete in nature.

Just like the solids or fluids we come into contact with every day, which can be seen as made up of atoms and molecules when observed at sufficient resolution. A structure of this kind generally implies, at very high energies, violations of Einstein’s special relativity (a integral part of general relativity).

Read more

Sep 22, 2016

Femtotechnology: A technology that is Beyond Nanotechnology

Posted by in categories: evolution, nanotechnology, particle physics, robotics/AI

Nanotechnology has reshaped the technological discoveries in the recent times. Nanotechnology has enabled the creation and invention of numerous things with wide potentialities. Every field is subject to constant evolution, nanotechnology is no exception. Researchers and scientists who are engaged with nanotechnology have now come up with femtotechnology.

Femtotechnology is widely defined as, “Hypothetical term used in reference to structuring of matter on the scale of a femtometer, which is 10^−15m. This is a smaller scale in comparison to nanotechnology and picotechnology which refer to 10^−9m and 10^−12m respectively.”

Continue reading “Femtotechnology: A technology that is Beyond Nanotechnology” »

Sep 22, 2016

Mach Effect Propulsion Theory Updates

Posted by in categories: information science, particle physics, space travel

Theory of a mach effect thruster I

The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 — 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. Researchers give a physical description of the MET device and apparatus for measuring thrusts. Next they explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). They show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.

It is shown that if Mach’s Principle is taken seriously, and the inertia of a body can be described as the interaction of the body with the rest of the universe, then the advanced and retarded fields transmitted between the particle and the universe can be used to explain the thrust observed in the Mach Effect drive experiments. This idea was originally put forward by one of the authors, James Woodward. The idea of inertia being a gravitational effect was first postulated by Einstein. In fact Mach’s principle was the foundation on which Einstein’s general relativity was based.

Continue reading “Mach Effect Propulsion Theory Updates” »

Sep 21, 2016

Passive Liquid Flow Can Aid Nanotechnology Development, Study Suggests

Posted by in categories: computing, engineering, nanotechnology, particle physics

Again organic nature teaches technology.


A new study, inspired by water’s movement from roots to leaves in tall trees, shows that a certain kind of passive liquid flow, where liquids naturally move in response to surface atomic interactions instead of being driven by external forces like pumps, is remarkably strong. By virtually modeling the way atoms interact at a solid surface, College of Engineering and Computer Science researchers suggest that passive liquid flow could serve as a highly efficient coolant-delivery mechanism without the need for pumps. The results, published in Langmuir, also have implications for the development of new nanoscale technology.

Read more