Menu

Blog

Archive for the ‘nanotechnology’ category: Page 57

Nov 21, 2022

DNA nanobots build themselves: How can we help them grow the right way?

Posted by in categories: biotech/medical, health, nanotechnology

Circa 2020 face_with_colon_three


UNSW researchers have overcome a major design challenge on the path to controlling the dimensions of so-called DNA nanobots—structures that assemble themselves from DNA components.

Continue reading “DNA nanobots build themselves: How can we help them grow the right way?” »

Nov 21, 2022

Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes

Posted by in categories: biotech/medical, nanotechnology

Circa 2020 face_with_colon_three


Light-activated molecular nanomachines (MNMs) can be used to drill holes into prokaryotic (bacterial) cell walls and the membrane of eukaryotic cells, including mammalian cancer cells, by their fast rotational movement, leading to cell death. We examined how these MNMs function in multicellular organisms and investigated their use for treatment and eradication of specific diseases by causing damage to certain tissues and small organisms. Three model eukaryotic species, Caenorhabditis elegans, Daphnia pulex, and Mus musculus (mouse), were evaluated. These organisms were exposed to light-activated fast-rotating MNMs and their physiological and pathological changes were studied in detail. Slow rotating MNMs were used to control for the effects of rotation rate. We demonstrate that fast-rotating MNMs caused depigmentation and 70% mortality in C.

Nov 21, 2022

A breakthrough 3D-printed material incredibly strong and ductile

Posted by in categories: 3D printing, biotech/medical, drones, nanotechnology, satellites

It’s all thanks to nanoclusters.

A new nanoscale 3D printing material developed by Stanford University engineers may provide superior structural protection for satellites, drones, and microelectronics.


A dual-phase, nanostructured high-entropy alloy that has been 3D printed by researchers from the University of Massachusetts Amherst and the Georgia Institute of Technology is stronger and more ductile than other cutting-edge additively manufactured materials. This discovery could lead to higher-performance components for use in aerospace, medicine, energy, and transportation.

Continue reading “A breakthrough 3D-printed material incredibly strong and ductile” »

Nov 20, 2022

Graphene scientists explore electronic materials with nanoscale curved geometries

Posted by in categories: nanotechnology, particle physics

In a recently published paper in Nature Electronics, an international research group from Italy, Germany, the UK, and China examined significant development directions in the field of electronic materials with curved geometries at the nanoscale. From microelectronic devices with enhanced functionality to large-scale nanomembranes consisting of networks of electronic sensors that can provide improved performance.

The scientists argue that exciting developments induced by curvature at the nanoscale allow them to define a completely new field—curved nanoelectronics. The paper examines in detail the origin of curvature effects at the and illustrates their potential applications in innovative electronic, spintronic and superconducting devices.

Curved solid-state structures also offer many application opportunities. On a , shape deformations in electronic nanochannels give rise to complex three-dimensional spin textures with an unbound potential for new concepts in spin-orbitronics, which will help develop energy-efficient electronic devices.

Nov 20, 2022

Quantum effects in memristive devices

Posted by in categories: encryption, nanotechnology, quantum physics, robotics/AI

At the nanoscale, the laws of classical physics suddenly become inadequate to explain the behavior of matter. It is precisely at this juncture that quantum theory comes into play, effectively describing the physical phenomena characteristic of the atomic and subatomic world. Thanks to the different behavior of matter on these length and energy scales, it is possible to develop new materials, devices and technologies based on quantum effects, which could yield a real quantum revolution that promises to innovate areas such as cryptography, telecommunications and computation.

The physics of very small objects, already at the basis of many technologies that we use today, is intrinsically linked to the world of nanotechnologies, the branch of applied science dealing with the control of matter at the nanometer scale (a nanometer is one billionth of a meter). This control of matter at the is at the basis of the development of new electronic devices.

Among these, are considered promising devices for the realization of new computational architectures emulating functions of our brain, allowing the creation of increasingly efficient computation systems suitable for the development of the entire artificial intelligence sector, as recently shown by Istituto Nazionale di Ricerca Metrologica (INRiM) researchers in collaboration with several international universities and research institutes.

Nov 19, 2022

Canon on cusp of nanoimprint chip-making revolution

Posted by in categories: computing, nanotechnology

Canon is moving ahead with a plan to build a new factory in Japan to double the production of its semiconductor lithography equipment.

The planned facility will produce both the standard KrF and i-line machines that constitute the bulk of the division’s sales and the nanoimprint tools that Canon hopes will open a new era in semiconductor manufacturing.

Addressing investors after the announcement of third-quarter results in late October, Canon’s management referred to “our leading-edge nanoimprint lithography equipment.”

Nov 19, 2022

#NBIC: Researchers designed a lipid nanoparticle that sticks to bone minerals, increasing mRNA delivery and therapeutic protein expression in the bone

Posted by in category: nanotechnology

https://www.drugdiscoverynews.com/for-local-mrna-delivery-na…bone-15543

Nov 18, 2022

Print a working paper computer on an $80 inkjet

Posted by in categories: computing, nanotechnology

Circa 2013 face_with_colon_three


“IMAGINE printing out a paper computer and tearing off a corner so someone else can use part of it.” So says Steve Hodges of Microsoft Research in Cambridge, UK. The idea sounds fantastical, but it could become an everyday event thanks in part to a technique he helped develop.

Hodges, along with Yoshihiro Kawahara and his team at the University of Tokyo, Japan, have found a way to print the fine, silvery lines of electronic circuit boards onto paper. What’s more, they can do it using ordinary inkjet printers, loaded with ink containing silver nanoparticles. Last month Kawahara demonstrated a paper-based moisture sensor at the Ubicomp conference in Zurich, Switzerland.

Continue reading “Print a working paper computer on an $80 inkjet” »

Nov 17, 2022

Engineers designed a new nanoscale 3D printing material that can be printed at a speed of 100 mm/s

Posted by in categories: 3D printing, drones, energy, nanotechnology, satellites

It’s all thanks to nanoclusters.

A new nanoscale 3D printing material developed by Stanford University engineers may provide superior structural protection for satellites, drones, and microelectronicsAn improved lightweight, a protective lattice that can absorb twice as much energy as previous materials of a similar density has been developed by engineers for nanoscale 3D printing.

According to the study led by Stanford University, a nanoscale 3D printing material, which creates structures that are a fraction of the width of a human hair, will enable to print of materials that are available for use, especially when printing at very small scales.

Continue reading “Engineers designed a new nanoscale 3D printing material that can be printed at a speed of 100 mm/s” »

Nov 17, 2022

3D-printing microrobots with multiple component modules inside a microfluidic chip

Posted by in categories: 3D printing, biotech/medical, chemistry, nanotechnology, robotics/AI

Scientists from the Department of Mechanical Engineering at Osaka University introduced a method for manufacturing complex microrobots driven by chemical energy using in situ integration. By 3D-printing and assembling the mechanical structures and actuators of microrobots inside a microfluidic chip, the resulting microrobots were able to perform desired functions, like moving or grasping. This work may help realize the vision of microsurgery performed by autonomous robots.

As medical technology advances, increasingly complicated surgeries that were once considered impossible have become reality. However, we are still far away from a promised future in which microrobots coursing through a patient’s body can perform procedures, such as microsurgery or cancer cell elimination.

Continue reading “3D-printing microrobots with multiple component modules inside a microfluidic chip” »

Page 57 of 257First5455565758596061Last